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Abstract— It is shown that the separation between space-
time codematrices can be described in terms of a metric of
Euclidean type, which is defined via the singular values of
difference codematrices, and arises naturally from a mini-
mization of the pairwise error probability. Essentially, the
distance between complex space-time codematrices is the
Euclidean distance between the respective—demultiplexed
and concatenated—transmit antenna streams, expressed in
terms of the structure inherent to the multiple antenna ar-
rangement. It is further shown that the determinant crite-
rion can be strengthened, in a manner that not only suggests
an optimum space-time codematrix structure, but also out-
lines the central role played by the Euclidean distance in
quasistatic fading. Theorem 5—which claims that in order
to optimize the product distance one must optimize the Eu-
clidean distance—establishes a close inter-dependence be-
tween product and Euclidean distances; it thereby links
the performance determining factors in quasistatic and in-
dependent fading, and rigorously establishes the relevance
of combining space-time coding and modulation in fading
environments. A multidimensional space-time constellation
for two transmit antennas, and its coset partitioning—based
on traces of differences between constellation matrices—are
described. Example codes constitute the first reporting of
a space-time coded modulation scheme for fading channels,
whereby a space-time constellation is partitioned in cosets.

Keywords—Diversity, space-time coded modulation, space-
time coset codes, equal eigenvalue criterion, product dis-
tance.

I. INTRODUCTION

Space-time coding constitutes a means for combating
the signal fading inherent to wireless communications,
and is aimed in its most general form at enhancing
both the coding gain and the level of diversity—where
the latter includes transmit diversity. Motivated by the
information-theoretic results of Winters [29], Foschini and
Gans [12], and Telatar [27], early ideas on transmit di-
versity schemes—wherein, e.g., a transmit antenna sends
a delayed replica of another transmit antenna’s signal—
have been refined by the works of Guey et al. [16], Tarokh
et al. [26]. Reviews on the evolution of these ideas can
be found in the introductory sections of [26], [16], [17].
Since it is advantageous to separate the problem of com-
bating fades from that of channel equalization, the criteria
for designing space-time codes are usually derived in the
context of narrowband modulation and frequency nonse-
lective fading; this isolates transmit diversity from those
forms of diversity associated with the radio channel, e.g.
due to multipath. Coding with spatial and temporal re-
dundancy is accomplished by finding an efficient way to al-
locate symbols to different transmit antennas, while adding
some type of redundancy—for implementing forward error
correction—jointly across antennas. For each of the sym-
bol streams associated with different antennas, the system
can then resort to other means for combating frequency
selective fading; e.g., orthogonal frequency division multi-

plexing (OFDM) [1].

In the single transmit antenna case, independent fad-
ing (IF)—from one complex symbol interval to another—
is known to bring up diversity inherent to the code, via
the minimum complex symbol Hamming distance between
codewords [10], [4]. In contrast, simultaneous use of sev-
eral transmit antennas allows for diversity even in flat qua-
sistatic fading (QF). The optimality of space-time codes
has been so far characterized via two criteria—Guey et al.
[16], Tarokh et al. [26]—mamely the determinant criterion
based on the product distance [10], [4], [5], and the rank
criterion. In [17], Hammons and El Gamal address binary
design aspects in connection with the rank criterion.

For single transmit antenna systems, the importance of
the product distance has been demonstrated in connection
with fading channels by the work of Divsalar and Simon
[10], who derived the first design rules. It should be remem-
bered, nonetheless, that this quasi-distance fails to verify
all of the axioms of a metric. In the transmit diversity
scenario, the determinant criterion is non-constructive and
thereby does not easily provide a means to implement it.
Thereby, known space-time codes have either been designed
based on the rank criterion, or found by some computer
search [26], [15], [3], [30]. In [5], [4] good reviews of the
known approaches to coding for fading channels are given
for the single transmit antenna case, along with references.
In [20] it was shown that an Euclidean distance arising from
the singular values of difference code matrices is relevant
in fading. In [21], [18], Marzetta and Hochwald present a
capacity achieving structure for space-time signal constel-
lations. The focus in [21] is on a space-time modulation
scheme, whereby signaling is accomplished with waveforms;
one waveform covers a number of complex symbol epochs,
which amount to the relevant channel correlation time.

The space-time code design problem is approached be-
low from a codeword separation perspective, with the goal
of minimizing the code matrix pairwise error probability
(PEP). Traditionally, two characterizations of codeword
separation in a space-time code have been used: the prod-
uct distance [10], [4] and the Hamming distance. Divsalar
and Simon’s results in the single transmit antenna case
with interleaving show that the product distance deter-
mines the coding gain, while the minimum complex symbol
Hamming distance sets the diversity level derived from cod-
ing [23]. Tarokh et al. arrived at a similar conclusion in the
case of transmit diversity in rapid fading [26]. This paper is
organized as follows. After defining the problem setting, a
rigorous metric between two code elements is identified [20],
and shown to be an Euclidean distance directly relevant to
maximum likelihood detection. In Section III-B, it is shown
that the determinant criterion [26] can be strengthened, in
a manner that suggests an optimum space-time codema-



trix structure, and outlines the central role played by the
Euclidean distance in quasistatic fading. In Section III-D,
Theorem 5 establishes a close inter-dependence between
product and Euclidean distances. Apart from constitut-
ing an insightful link between the performance determin-
ing factors in QF and IF, Theorem 5 establishes the rele-
vance of, and motivation for, combining space-time coding
and modulation in fading environments. In Section III-E, a
multidimensional space-time constellation for two transmit
antennas, and its coset partitioning are described; example
codes constitute the first reporting of a space-time coded
modulation scheme for fading channels, whereby a space-
time constellation is partitioned in cosets via Euclidean
distances.

II. THE PROBLEM SETTING

Consider the problem of space-time code design for lin-
ear modulation on frequency nonselective fading channels.
For a system with L transmit and M receive antennas,
where the fading is uncorrelated across antennas, the total
diversity level achieved is M times the diversity of a single
receive antenna system. While M = 1 will be eventually
assumed, the general notation is used below until the closed
form for the received signal is obtained. Let [ be the num-
ber of symbol epochs covered by a codeword (a frame in
[26]). It is meaningful to regard ! as the number of adjacent
complex symbol epochs processed simultaneously, to some
extent, in the detector. A codeword is the concatenation
of all symbols sent over all of the L antennas during the
corresponding [ consecutive symbol epochs (starting, say,
at time k ); e.g., a codeword ¢ starting at instant k is

T
[ @ L 1 L [T T T
e[ Pyl | el ) )
where ¢ is a complex symbol, from the complex signal
constellation (with unit average energy, same for all trans-
mit antennas), transmitted at discrete time instant x over

transmit antenna i. Alternatively, a more meaningful rep-
resentation of the codeword c is via the code matrix
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Let an arbitrary symbol on any transmit antenna be trans-
mitted with energy Es. Also, let the channel attenuation
coefficients between transmit antenna i and receive antenna
j be a; ;(-), with E{|a;;|*} = 1, Vi, j; eventually, after
defining the general setting, j will be constrained to 1.

Remark 1: If one is to compare the L-transmit antenna
system with a single transmit antenna system, then F
should be replaced by Es/L, for the same total energy.

At time t, the signal received at receive antenna j is

2O (t) = Y0 i ()sDOVE + 0D (). (3)

In (3) it is implicitly assumed that the fading changes from
one symbol epoch to another, hence the time dependence;

and that 70 (t) is zero mean complex Gaussian noise with
variance Np/2 per dimension. Assume, for simplicity, neg-
ligible intersymbol interference and synchronism. Symbols
are sampled at t = kT and the detector is presented with

:cz(gj) = ZiLzl Qi j [k‘]c,(:) VE;s + nl(cj)' Denote
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which in the continuum case has the well-known auto-
correlation function ESJO(Zng’])T); then

o) = S e ) o

Finally, the single receive antenna scenario reduces (5) to

o= Y0, e + e (6)

In the sequel, both quasistatic (block) and rapid fad-
ing scenarios are discussed. The former assumes «; ;(t) to
be constant over the duration of one codeword (I complex
symbol epochs), but change from one codeword to another.
The rank criterion [26] determines the diversity level in QF.
In rapid fading, the parameter determining diversity is a
Hamming distance [26], [10]. Both are addressed below.

The QF assumption implies 'y,(:) = ... = '71(;4)-1—1 def
7@, Vi € {1,...,L}. In matrix form, = D,y + 1
where subscript & was dropped and the obvious nota-
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n(L)] T, were used. Clearly, when fading is uncor-

tions ¢ = [z, ..

[n(l)a"'7

related across the different transmit antennas, -; def A ®
are i.i.d. zero mean complex Gaussian, with variance Fj.
It is known [7] that the probability Pr{D. — D.} of de-
coding D, when D, was transmitted is upper bounded by
a quantity which, in the QF scenario with perfect channel
state information (CSI), becomes

Pri{D; + De} = Pr{2R (n'Decy) > | Decyl*},  (7)

(see also [16]). In (7), R(-) denotes the argument’s real
part, “t” means conjugated transposition, and

Dec = De - Dc (8)
is the code difference matrix for codewords e and e.

III. CoDpE DESIGN

The separation between space-time codewords is charac-
terized in terms of a distance arising naturally from, and
strongly related to, the minimization of (7). The relevant
distance will be found to be Euclidean in nature, and a
general criterion that minimizes (7) will be formulated.

A. A Distance Metric via Schatten Norms

Consider an [ x L difference code matrix De.. Via sin-
gular value decomposition (SVD) [19]

D.. = ViZW. (9)



In (9), V, W, are unitary ! x [ and L x L matrices, re-
spectively; 3 is a [ X L nonnegative matrix whose elements
Verify Oij = 07 Vi # ja and O11 2 0 2 Opp > Or+1,r+1 =

- = 04 = 0, where ¢ def min{l, L} and r def rank(De.).
The 04, i = 1,...,q, are the singular values of Dg.; they
are also the non-negative square roots of the eigenvalues of

Di_D.. (L <! assumed). Via (7) and (9)
Pri{D. — D} =Pr{2R [n'17'] > +'Tv =[|v'|*} (10)

where ' = Vi and v/ = ¥W+y. This version of (7), as a
particular case of the result from [7], was communicated in
[16]. It will become clear that the above form of Pr; (D, —
D.) does not reveal all of the structure desirable of a space-
time code, and that (10) can be further processed to gain
insight.

It is immediate that ' is a zero mean Gaussian random
vector with i.i.d. components and covariance matrix NoI;;
also, that 4’ is a zero mean Gaussian random vector with
a diagonal covariance matrix E,XX!. Now consider the
12 (or Euclidean) vector norm. When applied to matrices
instead of vectors, it acts as a generalized matrix norm,
called the Frobenius norm || - ||2. The latter verifies [19]

(11)

where 0;(A) are the singular values of A€ M,, ,, and My, ,,
is the set of all m x n complex matrices; note that o?(A)
are the eigenvalues of AT A, denoted A;(ATA). The Frobe-
nius norm is a particular case of the more general Schatten
norms, which are unitarily invariant norms on M, ,,. Then
Proposition 1: Let ¢ = min{l, L}, and dg(-,-) denote
the Euclidean distance. Given a space-time code C of
block length I, for L transmit antennas, the mapping
d:C x C+ R defined as d(De, D) = (Y1_, 03(Dec))'/?
is a space-time metric on C, and d(De, D) = dg(e, c).
Proof: Let My, ,, be the set of complex m x n matri-
ces. Since (—A)f(~A) = ATA, VA € M; 1, and the sin-
gular values of D, are the nonnegative square roots of
the eigenvalues of Dl eDec, then D and —De, share the
same set of singular values, i.e. d(De,D.) = d(D,, D.).
Also, d(De,D.) = 0 <= |D. — D.||s =0 < D, = D, <
e = ¢, where (a) follows from (11). Finally, VDg € C,
d(DeaDC) = ||De - Dc||2 = ||De — Dy + Dy — DCHQ <
|Degllz + | Dgells = d(De, Dg) + d(Dy, De). Therefore
d(-,-) is a metric and d(De, D.) = dg(e,c) via (11). O
Via Proposition 1, the relevant distance between space-
time code matrices is essentially Euclidean. Thus, at least
when the channel can be estimated and the fading is qua-
sistatic, the relevant distance between the space time code
matrices D, D, is the Euclidean distance between e, c,
but expressed in terms of the structure inherent to the mul-
tiple antenna arrangement, via the singular values of De.
Since the product distance [10], [15] is not a metric, Propo-
sition 1 suggests that features like geometric uniformity
should be still sought relative to the Euclidean distance.
Proposition 2: (Additivity) If De,D. € C, then

a b
dD.,D.) 2 tr (DI _D..) £ tr (D.Dl). 1If ¢ =

2 min{m,n
A5 = St 62(A), Ae My,

[ef...el.. )"
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are branch label sequences
in the trellis for a space-time code C—i.e. ¢, = [c{V). . .¢{]7,
similarly for e,—then d?(De, De)=>"." d%(cx, €x).
Proof: (a) follows from the singular values of A being
the nonnegative square roots of the eigenvalues of ATA,
VA € My, L <I, and from tr(A) being the eigenvalue
sum of A. Since D:chec = WISTEW and Dechc =
VISV (via (9)), D! _D.., D..D}_ are unitarily diag-
onalizable, with the same nonzero eigenvalues. The last

part is straightforward. o
As to the PEP between D., D, € C, the closed form

Pri{D. — D.} = (1/2)erfc (|\7’||/\/4N0) :

is derived in Appendix A; it allows for exact calculation
of the average quantity E{Pri{D. — Dg}}, which can
be obtained by noting that |~/||?> is a quadratic form
~IWTSTSW~—in complex Gaussian variables ~;—for
which the p.d.f. is well known (see Appendix B). Then

Proposition 3: Ini.i.d. L-transmit-antenna Rayleigh fad-
ing, assuming perfect CSI at the receiver, E{Pri(D. —
D.)} > (1/2)erfe(y/d?(De, De)Es/4Ny). Equality oc-
curs if /= W= lies on the R** hyperellipsoid ||~'||* =
E{|['[I*} = Es Y1, 0?(Dec). If all singular values of De,
differ, then

(12)

L
E{Pri{D. — D.}}= %Z A [1-

i=1

where 4; % U?i(Lil)/Hgil, (0% —0%,). If all singular
7

values are equal, 0;; = o, Vi=1,..., L, then

E{Pri{D. — D.}} =
[%(1_ﬂﬂL é;ol (L—]%—i—k:) L (1+M)]k (14)

for %\ /(02 B, /AN,) /(1 +02Es/ANy), o =(tr(D}_Dee))/L.

Intermediate cases are similar. As alternatives to com-
plex residue formulae [16, eq. (29)], (13), (14) offer a per-
spective linked to more familiar expressions of diversity.
Equality in Proposition 3 minimizes Prq (D, +— D), con-
ditioned on d(D., D.); increasing d(D., De) can further
reduce Prq(D¢e— D).

B. Space-Time Code Design via an Equal Figenvalue Cri-
terion (EEC)

The optimal structure of the matrix chDec, as well as
the interaction between Euclidean and product distances,
are characterized. Let Iy, denote the unit L x L matrix.

Proposition 4 (EEC) In ii.d., L transmit antenna, qua-
sistatic Rayleigh fading with perfect CSI, Pri(D. — D,)
is made as small as possible at diversity L iff, for all pairs
D., D, € C, the Euclidean squared distances tr(DJ; oDec)
are made as large as possible, and the non-square matri-
ces D¢ are, up to certain proportionality factors, semi-
unitary—i.e. D:chec = (tr(chDec)/L) I;. Suboptimal



codes (relative to Pry (D, +— D)) are characterized by ma-
trices Dl cDec whose main diagonal elements are as close
as possible to each other (or tr(D]_De.)/L), and for which
the row-wise sum of the absolute values of the elements off
the main diagonal is as small as possible for each row.
Proof: Suppose | > L, whereby ¢ = min{l,L} = L.
By the determinant criterion [26], one must maximize
HiL:1 0%, where o2 are the eigenvalues \;(D]_ De.) of
Dl oDec. Necessarily, Dl oDec is positive definite, as all its
eigenvalues o2 > 0 (diversity L assumed). By Hadamard’s
theorem [19], maximization of the product of the eigen-
values of some square, positive definite matrix A = [a;;],
with a;; fixed, occurs iff the matrix is diagonal. Specif-
ically, [, A\i(A) = |A| < [, aii, where |A| is the deter-
minant of A, and equality holds iff a;; = 0 when i # j.
Further maximization of [], Ai(A) is possible by adjust-
ing a; so as to maximize Hi a;;. Via the arithmetic-
mean geometric-mean (AMGM) inequality, the necessary
and sufficient condition for maximizing Hle )\i(chDec)
isol =)= tr(DlCDec)/L, Vi =1,...,q. Hence, the mini-
mum eigenvalue product is maximized iff the Euclidean dis-
tance tr(Dl oDec) is made as large as possible for all pairs
D., D, € C, and each chDec is diagonal with all diag-
onal elements equal to tr(D]_Dec)/L = d*(De,D.)/L =
d% (e, )/ L. Sub-optimality follows from the continuous de-
pendence of polynomial zeros on polynomial coefficients—
applied to the eigenvalues and characteristic polynomial of
chDec—and Gersgorin’s theorem [19, pp. 343-364]. O

C. Multidimensional space-time trellis codes (MSTTC)

Proposition 4 identifies a desirable structure for an ar-
bitrary codematrix pair D, D, irrespective of how each
codematrix is generated. With the different transmit an-
tenna sequences along columns, a codematrix can be gener-
ated by supplying new rows—e.g. via a trellis—one or more
at a time. In the class of space-time trellis codes (STTCs)
discussed in [26], [15], [3], [30] every transition through the
trellis contributes one row to D.; essentially, the space-
time modulator is the L-fold Cartesian product between
the individual complex constellations used on the transmit
antennas. In order to increase the dimensionality of the
overall space-time modulator one must create additional
dimensions by using, e.g., consecutive time slots. In such
a multidimensional trellis approach each trellis transition
supplies an L’ x L matrix—rather than a 1 x L vector—
and thereby determines the symbols transmitted from the
L transmit antennas over L’ consecutive symbol epochs.
Denote the length of the shortest error event path (EEP)
in the trellis by pmin. Then, rather than enforcing Proposi-
tion 4 on all valid pairs D.., D., one can focus on those that
dominate performance, i.e. on the difference code matrices
corresponding to EEPs of length(s) up to some p’ > pmin.

Let L' = L, and let L divide I. View D, D., D, as
(/L) x 1 arrays of L x L sub-matrices with entries from the
modulator constellation(s). In a multidimensional STTC
(MSTTC) any code matrix is regarded as a sequence of
l/L, block L x L sub-matrices, formed via a trellis whose
branches span L modulator symbol epochs, and are there-

fore labeled with valid L x L sub-matrices. A trellis path is
selected depending on both the current state and the cur-
rent block of new input symbols. A MSTTC is said to be
optimal up to EEPs of length p’ > pui, if any difference
code matrix pertaining to an EEP of length p < p’ trellis
transitions (pL modulator symbols) is optimal in the sense
of Proposition 4.

D. The Connection with the Product Distance

The maximization of the product distance is now
linked to the determinant criterion, in order to prove
that its strengthening is nontrivial. Let £k &
{p|p {0, ... ,l—l},ZiL=1 |ez(f) - cz(f)|2 #O}; the product
distance defined in [4, pp. 719-720] is generalized to mul-
tiple transmit antennas (codewords span complex symbol
epochs 0,...0 —1). Define the product distance

1/dH(DE7DC)
) ; (15)

L
D2 ™ (T Y e -

mek i=1

§2du(De;De) (D, D,) has occurred naturally in the discus-
sion of rapid fading by Tarokh et al. [26, IL.D, eq. (17)],
and 62(De, D..) acts as a coding gain in IF; the underlying
assumption in [26, I1.D] was that the flat fading coefficients
change independently between complex symbol epochs.

Remark 2: (15) remains valid in a mixture of IF and
QF—i.e. when fading is block-wise constant within indi-
vidual blocks of L complex symbol epochs, and indepen-
dent between such disjoint blocks in a codeword (see Ap-
pendix C); e.g., one may interleave entire blocks of L con-
secutive epochs. In effect, the flat fading coefficients would
be independent from one block of L consecutive epochs to
the next, while remaining constant within a block. How-
ever, interleaving in this manner forces all coordinates of
the multidimensional space-time constellation points to be
interleaved together, as blocks.

In (15), dg(De, D.) is the cardinality || of K, or the
row Hamming distance between D, D, (transmit anten-
nas on columns); it equals the number of complex symbol
epochs wherein D, D, send different complex symbols at
least through one antenna, and will be called a ‘row Ham-
ming distance,” as every row spans one complex symbol
epoch. When L = 1, (15) reduces to the expression in
[4, pp. 719] where it is shown that increasing the product
distance lowers the codeword PEP in IF.

Theorem 5: The Euclidean distance squared d% (e, ¢) re-
stricts the extent to which the product distance 6?(D,, D.)
can be increased, via

tl"(chDec) _ d2E(eac) > 52(D D )

dH(D57Dc) B dH(Dech) o

(16)

and the optimal space-time code structure maximizes
6*(De, D), given tr(D}_De.).

Proof: Consider the [ x [ matrix DecDj; »» Whose nonzero
diagonal elements are ZiL:1 |e£fb) — c&f} |2, m €K, and whose
trace is ) i ZiL:1 |e§,i,) - c$,2)|2 Since tr (D] De.) =



tr (DeeD],), (16) follows directly from the AMGM in-
equality. In order to characterize the condition that
achieves equality, note first that, since singular values are
invariant to complex conjugated transposition, the (rank
L) matrices D, and ch have the same singular values.
By the SVD theorem, the L singular values of the matrices
D, Dl . are, respectively, the nonnegative square roots of
as many eigenvalues of Dechc and, respectively, chDec.
Clearly, when [ > L, the rank L, [ x [, Hermitian matrix
Dech . has exactly L nonzero eigenvalues and [ — L zero
eigenvalues, thereby being singular. While this prevents a
straightforward application of Hadamard’s theorem, it does
imply that the nonzero eigenvalue product is the same for
both DecDJ; . and DJ; oDec, and thereby maximized under
the equal eigenvalue condition of Proposition 4. On an-
other hand, the product of the L nonzero eigenvalues of
Dech . equals the sum of its (nonzero) principal L x L
minors. They are positive because the Hermitian matrix is
positive semidefinite. Finally, apply Hadamard’s inequal-
ity to each positive definite principal minor, to infer that
maximization requires of all nonsingular, nested, L x L
principal sub-matrices of DecDj; . to be diagonal, and—via
the AMGM inequality—have equal main diagonal entries.
Given tr(D]_De.), all nonzero main diagonal entries in
Dech . must be equal, thus achieving equality in (16). O

By letting [ = L, considerations similar to those used
in the proof of Theorem 5 lead to the following corollary,
which can characterize a mixture of QF and IF (see Re-
mark 2, Appendix C, Corollary 7).

Corollary 6: If D, D, are L x L codematrices, and De,
is full rank, then

1/L
=0%(De, D.). (17)

L

I1

m=1 i=

L
i (T Y1 - )
1
Equality is achieved iff chDec is diagonal, in particular
when the equal eigenvalue condition is met.

By Theorem 5, any attempt to increase §%(De, D.)—
e.g. by adjusting 25:1 |e£fb) - c%>|2 while preserving
dp(De, D.)—is as successful as the squared Euclidean dis-
tance tr(chDec) permits. Theorem 5 is transparent to
the number of complex symbol epochs covered by one trel-
lis transition; also, dg(De, D.) is a key parameter—which
should be increased—as it determines the diversity level
when interleaving is used. Thereby, the code’s perfor-
mances in quasistatic and fast fading are closely related.

As trellis coded modulation (TCM) attempts to increase
the minimum Euclidean distance (per trellis transition),
Theorem 5 implies that TCM techniques remain relevant
to the design of STTCs. In multidimensional space-time
TCM (Section III-C), a multidimensional space-time con-
stellation is partitioned via Euclidean distances (traces of
branch label differences, see Section III-E.1), and a trellis
selects the relevant L x L codematrices (symbols transmit-
ted by L antennas in L consecutive symbol epochs). Such
structure should be enforced at least on the codeword pairs
yielding the shortest EEPs.

Average Pr1 { DC - De)

E. Discussion and Examples

Alamouti’s scheme [2] for L = 2 transmit antennas uses
the Hurwitz-Radon (HR) transform [25]; like the full-rate
space-time block codes of [25], it does obey the structure
outlined above, and offers a simple means to implement
Proposition 4: concatenate any encoder, a mapper from
encoded symbols to constellation points, and a HR trans-
form. However, such a code would have a subunitary rate,
i.e., with 4PSK modulators on the individual antennas, the
code would send less than 2 bits/s/Hertz.

In order to illustrate the effects of the eigenvalue spread
the expectation F {Pri{D. +— D.}} is plotted vs. Fs/Ny
in Figure 1, for different sets of eigenvalues of DJ; oDec, in
the two cases L = 2, L = 4. Note that tr(D]_ De.) equals
4 in both cases, and that increasing tr(D]_ De.) does not
influence the relative spacing between curves. The effect of
eigenvalue imbalance is visible and illustrates the impor-
tance of allocating tr(D]_De.) equally among the eigen-
values of chDec. While the values indicated in Figure 1
for squared singular values are chosen only for illustrative
purposes, they do allow one to verify that the separation
between curves, in dB, is as predicted by the ratio be-
tween the geometric and arithmetic means of the eigenval-
ues of DI Dee, i.e. 10log;o[(T], o2) /(28 02)];
e.g., the curve marked with a ‘A’ is asymptotically
|1010g;0[(0.08 - 3.92)/2/(4/2)]| ~ 5.5dB away from the
equal eigenvalue curve for L = 2. Asymptotically with
the signal-to-noise ratio (SNR), all curves pertaining to one
value of L are parallel—i.e. they exhibit the same diversity.

Two examples of STTCs for 4PSK and L = 2 trans-
mit antennas, designed along the lines discussed in Sec-
tion ITI-C, follow. The constructions—along with the mul-
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Fig. 1. Effect—on PEP—of singular value imbalance, and quantita-

tive illustration of the coding gain. For L = 2, L = 4 transmit
antennas, the average Pri1{D. — D¢} is plotted vs. Es/Np, for

different sets of eigenvalues of chDec; tr(chDec) = 4.

tidimensional constellation of Table [-—guarantee that the
code matrix pairs corresponding to the shortest EEPs in



the trellis verify the equal singular value (ESV) condition.
While an exhaustive search was not conducted to maximize
Euclidean distances between such pairs, or minimize their
number, the constructions are a convenient way to enforce
the ESV structure via properties of orthogonal matrices.

E.1 An 8-state multidimensional space-time trellis code

The trellis diagram of an 8-state multidimensional code
constructed via the approach discussed in Section III-C is
shown in Figure 2. This code verifies the ESV condition
for code difference matrices up to EEPs of length p’ = 2
transitions (see Section III-C). This is accomplished by the
use of an augmented set of Alamouti matrices, as follows.
For L=2 and 4PSK, the 16 orthogonal complex matrices
discussed by Alamouti [2] do exhibit the aforementioned
(optimal) ESV structure for all pairwise differences. In or-
der to achieve the desired spectral efficiency of 2 b/s/Hz,
one must have enough 2 X 2 constituent matrices in the
multidimensional constellation; this requires augmenting
the optimal matric set—e.g., by a reflection of itself, see
the two halves of Table I. Note that, in effect, some pairs
of codematrices from the augmented set will not obey the
ESV structure. Nevertheless, each half of Table I does form
an orthogonal set of 16 2 x 2 Alamouti matrices of the form
[éﬁ _Z*} or [_%* c?*] The design is to guarantee that all
difference code matrices pertaining to an EEP of length
k < 2 transitions (2k modulator symbols) have ESVs. This
is easily achieved by a trellis labeling which uses, e.g., the
first half of Table I for transitions starting in even states,
and the second half of Table I for transitions starting in
odd states; since each half is a complete Alamouti set, the
ESV structure is inherited by differences between the la-
bels of parallel transitions (EEPs of length 1), and between
sequences of labels corresponding to EEPs of length 2.

(0,2,8,10),(4,6,12,14),(5,7,13,15),(1,3,9,11)
(20,22,28,30),(16,18,24,26),(17,19,25,27),(21,23,29,31)
(4,6,12,14),(0,2,8,10),(1,3,9,11),(5,7,13,15)

(16,18,24,26),(20,22,28,30),(21,23,29,31),(17,19,25,27)

(17,19,25,27),(21,23,29,31),(20,22,28,30),(16,18,24,26)

(1,3,9,11),(5,7,13,15),(4,6,12,14),(0,2,8,10)

0
1
2
3
(5,7,13,15),(1,3,9,11),(0,2,8,10),(4,6,12,14) 4
5
6
7

(21,23,29,31),(17,19,25,27),(16,18,24,26),(20,22,28,30)

Fig. 2. Trellis diagram of 8-state STTC code; two coded, two un-
coded bits. A connection between two states represents a cluster
of four parallel transitions. For each transition, the branch la-
bel represents the subscript index of a matrix C;, ¢ = 0,...,31,
from Table I; each C; reflects the complex symbols transmitted
during two consecutive 4PSK symbol epochs from both trans-
mit antennas. One pair of parentheses encloses labels of parallel
transitions (within respective cluster) ordered by increasing deci-
mal value (0...3, left to right) of corresponding uncoded bit pair.
The decimal values of different pairs of coded bits—corresponding
to respective clusters—are shown next to each node.

The branch labels (listed on the left hand side) are
grouped in 4-tuples—corresponding to groups of 4 paral-
lel transitions from each state—and represent subscript in-

dices of the matrices C;, i = 0,...,31, from Table I ; e.g.,
from state 0 with two coded, and two uncoded, input bits
that have base-10 representations of 3 and 1, respectively,
the code transitions to state 2, sending C7.

The matrices C;, ¢ = 0,...,31, are a subset from
the four-fold Cartesian product of the 4PSK constellation
with itself (hence the redundancy). The entries of Cj,
i = 0,...,31, represent indices of complex points from
the 4PSK constellation s, = (1/v/2 + j/V/2) exp(jmn/2),
m =0,...,3. Each C; defines the 4PSK symbols to be sent
over the I = 2 transmit antennas, during two consecutive
symbol epochs. Consequently, each trellis branch covers
two consecutive 4PSK symbol epochs; while this consti-
tutes a similarity with multiple trellis coded modulation
(MTCM) of multiplicity two [9], the space-time trellis in
Figure 2 can not be reduced to a concatenation between a
binary MTCM trellis of multiplicity two and a 2 x 2 orthog-
onal block code. Finally, complexity is judged in terms of
the product between the number of states and the num-
ber of transitions emerging from each state, normalized to
one complex symbol epoch; e.g., since each transition in
Figure 2 spans two symbol epochs, and 16 transitions (in-
cluding parallel ones) emerge from any state, complexity
is 16 x 8/2=64—equal to that of Tarokh’s 16-state STTC.
The 32 matrix set in Table I is partitioned in eight cosets

TABLE 1
2 %2 MATRICES Cl,...,C31, FORM MULTIDIMENSIONAL SPACE-TIME
CONSTELLATION, WITH SUBSCRIPT INDICES USED IN TRELLIS BRANCH
LABELS. ENTRIES OF C;, i=0,...,31, REPRESENT INDICES OF
COMPLEX POINTS FROM A 4PSK CONSTELLATION. EACH C; DEFINES
4PSK SYMBOLS TO BE SENT OVER L = 2 TRANSMIT ANTENNAS,
DURING TWO CONSECUTIVE COMPLEX SYMBOL EPOCHS.

| CO...C7 | Cg ...015 | Clﬁ ...ng | CQ4...C31 |

03 73 01 7T
101 | 103] 103 101
BB | B
7017 1217 1037 1237
121 123] 123 121 |
7007 1207 1027 1227
131 133] 133 131
8| [ )| [
127 1327 7107 1307
110 [12] 112 110
8] | )| B | [
7107 1307 (127 1327
130 132] 132 130

by partitioning each half—a complete Alamouti set—into
four cosets, via Euclidean distances between multidimen-
sional points (traces of Gram matrices chDec of the 2x 2
difference matrices). By construction,

o Transitions starting from, or ending in, a state are la-
beled with matrices in the same half of Table I.

¢ Set partitioning maximizes the minimum Euclidean dis-



tance between branches sharing a state.

o DJ;CDEC has equal eigenvalues VD, pertaining to EEPs
of length p < 2 (4 complex 4PSK symbols).

e The row Hamming distance between labels of any two
parallel transitions is 2 (diversity 2 in IF [26]).

Figure 3 compares the average frame error probability
curve for this space-time code, against those of Alamouti’s
scheme and of two other trellis space-time codes from [26],
[6]—all sending 2 bits/sec/Hz; Viterbi’s algorithm was used
in the decoder. Because each trellis transition covers two
symbol epochs and the row Hamming distance between any
two parallel transitions is two, the parallel transitions in the
trellis of Figure 2 do not reduce the diversity level in IF (vs.
QF, see Figure 3). However, a comparison on equal com-
plexity grounds would pair the MSTTC in Figure 2 with,
e.g., the 16-state STTC from [26]; the latter has diversity
three in IF [13], and thereby outperforms the former in IF.

The parallel concatenation from [8], based on the four-
state, systematic and recursive constituent code presented
therein—which, like the space-time code from Figure 2, is
non-binary—is easily verified to perform slightly worse af-
ter eight iterations [8, Fig. 4] than the example code above
(see Figure 3). Note that the definition of complexity used
in [8] is different from the one used above; when the former
is observed, the turbo code from [8, Fig. 4] after eight iter-
ations is twice as complex as the 16-state space-time code
from [26], and more than five times as complex than the
example code from Figure 2.

E.2 A 32-state multidimensional space-time trellis code

While the largest diversity in IF reported in the litera-
ture [13] is three, the 2b/s/Hz, 32-state code in Figure 4
avoids parallel transitions, has a minimum row Hamming
distance of four, hence diversity four in IF (see Figure 3);
while it clearly outperforms the best 32-state code from

|
8

o

2b/s/Hz, L=2, M=1, Alamouti [2]
2b/s/Hz, L=2, M=1, 16-state, QF,
STTC, Tarokh et al. [29]

2b/s/Hz, L=2, M=1, 16-state, QF,
optimum STTC, Blum [6]
2b/s/Hz, L=2, M=1, 8-state, QF,
new multidimensional STTC
2b/s/Hz, L=2, M=1, 32-state, QF,
new multidimensional STTC
2b/s/Hz, L=2, M=1, 32-state, IF,
new multidimensional STTC
2b/s/Hz, L=2, M=1, 8-state, IF,
new multidimensional STTC

Frame error probability

P g ¢ b4 19

L L L L L L L
8 9 10 11 12 13 14 15 16 17 18 19 20
Average received ES/N0 per receive antenna

o
~

Fig. 3. Simulated frame error probability curves of several space-time
transmission schemes for L = 2 transmit, and M = 1 receive,
antennas, in quasistatic/independent fading; 130 symbols/frame.

[13], note again that a comparison on equal complexity
grounds would pair the MSTTC from Figure 4 with a 64-
state code in the class discussed in [26], [6], [3], [13]—Dbut
none has been explicated, or characterized in IF.

C;aselo representation of index of C;j inTh. I; bis;lo representation of input

00,01,02,03,05,04,07,06,09,08,11,10,12,13,14, lg

,01,02,03,05,04,07,06,09,08,11,10,12,13,14, 1
07,06,05,04,02,03,00,01,14,15,12,13,11,10,09,0: 1
23,22,21,20,18,19,16,17,30,31,28,29,27,26,25,24 N
01,00,03,02,04,05,06,07,08,09,10,11,13,12,15,14 , IS S5 £777
01,00,03,02,04,05,06,07,08,09,10,11,13,12,15,14 N>
06,07,04,05,03,02,01,00,15,14,13,12,10,11,08,0 , \‘\\&@3‘947'7;:%
22,23,20,21,19,18,17,16,31,30,29,28,26,27,24,24 i\&\y;gz;; &
02,03,00,01,07,06,05,04,11,10,09,08,14,15,12,13 N :g’g';g g
02,03,00,01,07,06,05,04,11,10,09,08,14,15,12,1% KX
05,04,07,06,00,01,02,03,12,13,14,15,09,08,11, 1
21,20,23,22,16,17,18,19,28,29,30,31,25,24,27,
03,02,01,00,06,07,04,05,10,11,08,09,15,14,13,1
03,02,01,00,06,07,04,05,10,11,08,09,15,14,13,1
04,05,06,07,01,00,03,02,13,12,15,14,08,09,10,11%
20,21,22,23,17,16,19,18,29,28,31,30,24,25,26,
05,04,07,06,00,01,02,03,12,13,14,15,09,08,11, 1
05,04,07,06,00,01,02,03,12,13,14,15,09,08,11,1
02,03,00,01,07,06,05,04,11,10,09,08,14,15,12,13
18,19,16,17,23,22,21,20,27,26,25,24,30,31,28,2%
04,05,06,07,01,00,03,02,13,12,15,14,08,09,10, 1.
04,05,06,07,01,00,03,02,13,12,15,14,08,09,10,1,
03,02,01,00,06,07,04,05,10,11,08,09,15,14,13,12
19,18,17,16,22,23,20,21,26,27,24,25,31,30,29,2
07,06,05,04,02,03,00,01,14,15,12,13,11,10,09,0:
07,06,05,04,02,03,00,01,14,15,12,13,11,10,09,0;
00,01,02,03,05,04,07,06,09,08,11,10,12,13,14,1
16,17,18,19,21,20,23,22,25,24,27,26,28,29,30,3
06,07,04,05,03,02,01,00,15,14,13,12,10,11,08,0"
06,07,04,05,03,02,01,00,15,14,13,12,10,11,08,0!
01,00,03,02,04,05,06,07,08,09,10,11,13,12,15,1-

09,08,11,10,12,13,14,15,00,01,02,03,05,04,07,0!
14,15,12,13,11,10,09,08,07,06,05,04,02,03,00,0:
30,31,28,29,27,26,25,24,23,22,21,20,18,19,16,1
08,09,10,11,13,12,15,14,01,00,03,02,04,05,06,0
08,09,10,11,13,12,15,14,01,00,03,02,04,05,06,0,
15,14,13,12,10,11,08,09,06,07,04,05,03,02,01,0
31,30,29,28,26,27,24,25,22,23,20,21,19,18,17,1
11,10,09,08,14,15,12,13,02,03,00,01,07,06,05,
11,10,09,08,14,15,12,13,02,03,00,01,07,06,05,
12,13,14,15,09,08,11,10,05,04,07,06,00,01,02,0
28,29,30,31,25,24,27,26,21,20,23,22,16,17,18,1!
10,11,08,09,15,14,13,12,03,02,01,00,06,07,04,0
10,11,08,09,15,14,13,12,03,02,01,00,06,07,04,0
13,12,15,14,08,09,10,11,04,05,06,07,01,00,03,0:
29,28,31,30,24,25,26,27,20,21,22,23,17,16,19,1;

12,13,14,15,09,08,11,10,05,04,07,06,00,01,02,0
11,10,09,08,14,15,12,13,02,03,00,01,07,06,05,
27,26,25,24,30,31,28,29,18,19,16,17,23,22,21,2|
13,12,15,14,08,09,10,11,04,05,06,07,01,00,03,0
13,12,15,14,08,09,10,11,04,05,06,07,01,00,03,0
10,11,08,09,15,14,13,12,03,02,01,00,06,07,04,0
26,27,24,25,31,30,29,28,19,18,17,16,22,23,20,2.
14,15,12,13,11,10,09,08,07,06,05,04,02,03,00,0
14,15,12,13,11,10,09,08,07,06,05,04,02,03,00,0
09,08,11,10,12,13,14,15,00,01,02,03,05,04,07,0t
25,24,27,26,28,29,30,31,16,17,18,19,21,20,23,2,
15,14,13,12,10,11,08,09,06,07,04,05,03,02,01,0
15,14,13,12,10,11,08,09,06,07,04,05,03,02,01,
08,09,10,11,13,12,15,14,01,00,03,02,04,05,06,0 a1
24,25,26,27,29,28,31,30,17,16,19,18,20,21,22,2.

increasing order of branch end-state index —

Fig. 4. Trellis diagram of 32-state STTC; all four bits coded. A tran-
sition output label (bottom row, next to each state) represents
the subscript index of a matrix C;, ¢ = 0,...,31 (Table I), which
reflects the complex symbols sent during two consecutive 4PSK
symbol epochs from both transmit antennas. A transition input
label (top row, next to each state) corresponds to output label
below it, and is the base-10 representation of input bit 4-tuple.

IV. CONCLUSIONS

The Euclidean distance is shown to directly determine
the extent to which the product distance can be increased.
The determinant criterion is tightened. Theorem 5 shows
that in order to increase the product distance one must
increase the Euclidean distance, and that performances in



QF and IF are closely related. The relevance of combining
space-time coding and modulation was established. The
example codes illustrate how one can combine modulation
and space-time coding in fading channels, by partitioning
a space-time constellation in cosets.
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APPENDICES
I. ApPENDIX A: PROOF OF PROPOSITION 3

R(-), S(+) denote real and imaginary parts, respectively;

4" = XYW+, and the assumption is QF with perfect
CSI. Consider the random variable (r.v.) 2®R[n'fy/] =
S (5 + i) = i &, where & = 2R(nj) =
QIR + SIS Sinee R, () are Gaus-
sian, uncorrelated, with zero mean and variance Ny /2, they
are independent and &; is zero mean Gaussian, with vari-
ance 2No|v/|?. Then & = v/2No|+|Ciy ¢ ~ N(0,1). Since
n;,m; are independent if 7 # j, so are (;,(;, i # j. Let

w0 VEN G = 2RI, w = Gy k=201
Clearly, the p.d.f. of the r.v. U; (whose observations are
uy) is the integral over (—o0,00)!~! with respect to uy, k =
2,...,10,of the joint p.d.f. of Ug, k =1,...,l. The modulus
of the transformation Jacobian is 1/(v/2No|v1]) and, since
the (; are jointly Gaussian, one finds by induction that

)= [ [ i dn o
pu,(u1) = . . U9 Ul 2N0|7{|(27T)l/2
1, [ur — vV2No|yhlug — - - = V2Noly/|w]?

Pl 2N
Fup )
1
pu, (1) =~ exp [—ud /(ANo [7|%)] (18)

V2Nov2x|ly/||

Since the probability of the normal r.v. U; exceeding ||/||?
is the @-function, Q(-) = (1/2)erfe(-/\/2),

Pry{D. s D,} = erfe (1LY IV ) (19

e Dep = gee| Uing )= 9\ VP ang | 1Y
VNo < ||’Y’|2) def /1

~ exp | — = FU~ID-

A P\ ) U

via (10); (19) is an asymptotic expansion [11, pp. 1-17] of
erfc(+) to one term, as ||v'||/v/4 Ny — oo since erfc(-) admits
the asymptotic expansion erfc(z) ~ exp(—x2)/(z/7) [22,
pp. 18, 37]. This approximation is asymptotically tight
as |7]/viN; — oo. Thereby, f(|v']) upper bounds
Pri{D. — D.} asymptotically tight. Moreover, from the
perspective of the desired minimization of the PEP, the

upper bound f(||¥||) approximates Pri{D. + D.} pes-
simistically (from above) for small ||v'||/+/4No. Taking the
expectation in (19) preserves the asymptotic expansion:

E{Pri{Dc— Dc}} ~ E{f(IIV'[D}. (20)

Further, the right hand side of (20) is an asymptotically
tight upper bound to E{Pri{D. — D.}}. From (19),
via Jensen’s inequality applied to the convex erfc(-), we

have E{Pr1{D, s D.}} > Q (\/E{||7’||2}/2N0> , where
the expectation is with respect to 4’ and equality occurs
iff ||¥'||? = E{||¥'||?}. Note that this essentially restricts
the envelopes |v;|, ¢ = 1,..., L, to be on a hyperellipsoid.
When fading is uncorrelated across antennas, v is a zero
mean Gaussian random vector with a diagonal covariance
matrix E;EXT, B{|¥||?} = EsY.; 0% = Es;d*(De, D.)
and the proof is completed by

E{Pr1{D, — D.}} > Q <\/Esd2(De, DC)/QNO) . (21)

II. ArPENDIX B: EXACT EXPRESSION FOR Pri{D.—D.}

7]l = VEsa and v = EW~, where v is the complex
vector of channel coeflicients, yield

17?2 =~y = E,a'WISISWa = E f(a); (22

f(a) is a quadratic form whose positive definite, Hermi-

tian matrix is F < WISISW. From [28], [24, pp.

590-595] the characteristic function of f(a) can be ex-

pressed in terms of the eigenvalues ¢; of R*F', where R Lot

(1/2)FE {(a - F{a})" (a — E{a})T} The characteristic
function of the positive definite, Hermitian quadratic form
e is Gp(€) = 1/T[, (1~ 2jé¢0), and R = (1/2)1,
¢ = 0%/2, Gy(&) = 1/HiL:1(1 —jécZ). Simple sin-
gular values oy; lead to (weighted) exponential distribu-
tions; a singular value of multiplicity [ produces a sum of
weighted central x? distributions with 2m degrees of free-
dom, m = 1,...,l. All different and all equal singular
values yield (13) and (14), respectively.

III. AprPENDIX C: DIVERSITY IN MIXTURE OF
INDEPENDENT, QUASISTATIC FADING

Let M = 1, for simplicity. Apart from the coding gain
6%(De, D..), a key parameter in flat, IF—from a complex
symbol epoch to another, e.g. ideal interleaver—is the di-
versity level, i.e. the minimum row Hamming distance over
all codematrix pairs [26]. In another possible fading sce-
nario the channel could change independently from a block
of L complex epochs to the next, while remaining essen-
tially constant within a block. In such a mixture of IF and
QF, the case when the row Hamming distance dg (De, D)
still determines the diversity order, and the coding gain is
still given by (15), despite of reducing by L a codeword’s
exposure to independent channel realizations, is character-
ized by

Corollary 7: Consider a MSTTC for L transmit anten-
nas, with trellis transitions labeled by L x L complex ma-
trices. Assume that the flat fading coefficients are constant



within each block of L consecutive, complex symbol epochs
determined by a trellis transition, and independent among
disjoint blocks. Consider an error event of length p’ trellis
transitions—covering p’ L complex symbol epochs, and mis-
taking D, for D.—such that the label difference matrices
of corresponding transitions in the EEP have full rank; the
pair D, D, experiences a diversity of dg(De, D) = p'L,
and

: 0 )\ V@D
0(De. Do) < (TIE, SEy lekd =) 7 (23)

Equality in (23) is achieved iff the L x L Gram matrices of
corresponding (trellis) label differences (within span of er-
ror event path) are diagonal, for which the equal eigenvalue
condition is sufficient.

Proof outline: Upper-bounding the PEP of mistaking e for
c starts with the squared Euclidean distance d%(e,c) =
S ISE () (el — )2 [26, TLBILD]. Group the
outer sum’s terms in subsets corresponding to the disjoint
blocks of epochs within which fading is constant; there are
p’ such nonzero terms, each containing L terms and having
the form Z?:J;L_H |ZiL=1 ai(egz) — cgz))|2. Averaging over
the p’ independent fades can be separated into p’ indepen-
dent averages; each one of these is an average PEP under
QF conditions, and is upper bounded by a quantity of the
form [([T, Mi)Y/EE,/4No] =L, where ); are the nonzero
eigenvalues of the full rank L x L matrices representing ho-
mologous trellis label differences along the EEP. Note that
diversity is dg(De, D) = p'L, and use Corollary 6. O
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