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PERFORMANCE OF AN ADVANCED VIDEO CODEC ON A GENERAL-PURPOSE
PROCESSOR WITH MEDIA ISA EXTENSIONS

Ville Lappalainen
Nokia Research Center, Tampere, Finland

Abstract--This paper analyses the performance of the state-
of-the-art media ISA (Instruction Set Architecture) extensions
in a general-purpose processorl, when executing a video
encoder based on an affine motion model.

In addition to SIMD (Single Instruction Multiple Data)
fixed-point instructions, these ISA extensions include SIMD
floating-point instructions, special-purpose SIMD fixed-point
instructions, and cacheability control instructions. In this
study, eight time-consuming kernels of the video encoder were
hand-optimized, using instructions in all four instruction
categories of these media ISA extensions (the FLP version).
These kernels were also hand-optimized using only SIMD
fixed-point ISA  extensions, without special-purpose
instructions (the FXP version).

For the FLP version, this study resulted in an average
kernel-level speedup of 1.37X and an application-level speedup
of 1.11X, compared to the FXP version, and an application-
level speedup of 3.41X, compared to the C version.

Index Terms--Performance, SIMD, media ISA extensions,
video coding.

I. INTRODUCTION

N order to meet the high computational requirements of

emerging multimedia applications such as video
conferencing and 3D graphics, current systems may use a
combination of general-purpose processors accelerated with
dedicated hardware performing spesialised computations.
This kind of hardware could include DSP (Digital Signal
Processing) or media processors as well as ASICs
(Application Specific Integrated Circuit). However, because
general-purpose processors offer several benefits, they are
used increasingly for media processing applications. These
benefits include ease of programming, higher performance
growth as well as reduced costs, for example. Thus, SIMD-
style media Instruction Set Architecture (ISA) extensions are
used for most high-performance general-purpose processors,
to reduce the need for specialised hardware. The ISA
extensions proposed in [25], [26), and [30] operate on fixed-
point data. Lately, several processor vendors have also
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extended their ISA with SIMD floating-point instructions
[2], [28], [8], [29].

A thorough study on the performance of several image
and video processing benchmarks with general-purpose
processors and fixed-point media ISA extensions is
presented in {27]. It also analyses the impact of alternative
architectures (e.g., by varying cache sizes) and software
prefetching. Additional studies, that concentrate more on
specific ISA extensions, include [24], [23], and [4], for
example.

3D geometry computation has traditionally been one of
the most floating-point intensive applications, whereas video
coding operations have typically been operating on integer
data. However, as described in this paper, also advanced
video coding algorithms can utilise the benefits of floating-
point ISA extensions such as large dynamics and fast
approximation instructions.

This study concentrates on measuring the impact of SIMD
floating-point ISA extensions and special-purpose SIMD
fixed-point ISA extensions on the performance of video
coding operations, as they represent the most recent
extensions to the state-of-the-art ISAs. Additionally, the
impact of the use of media ISA extensions on the static code
size and on the distribution of dynamic instructions is
reported, to better characterise the benchmarking kernels.

This paper is organised as follows. Section II introduces
the basic components of general video codecs. Section III
introduces the differences in the basic components of
advanced video codecs compared to those of general codecs.
Section IV describes how video coding operations can
benefit from SIMD floating-point operations, special-
purpese SIMD fixed-point ISA extensions, and cacheability
control instructions (e.g., prefetching instructions). Sections
V and VI describe the performance evaluation methodology
and the results, respectively. Section VII concludes the
work.

II. GENERAL VIDEO CODECS

General video codecs, such as H.263 and MPEG-4 are
basically motion compensated DCT (hybrid) codecs {14],
[13].

A. Motion Compensated Prediction

Motion compensated prediction is a widely recognised
technique for compression of video sequences. In this
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technique, one of the previously coded and transmitted
frames, called reference frame R, (x,y), is used to predict

the pixel values of the current, coded frame 1, (x,y) . The
predicted frame denoted here P, (x,y) is found using (1).

P(x,))=R(x+d,(x,y)y+d,(xy) O

The pair (d,(x, ¥),d,(x,y)) is the motion vector of the

pixel in the coded frame at location (x,y). Motion vectors

are calculated by the motion estimation component (see
Section I1.C) in the encoder. The set of motion vectors of all
pixels of the current frame is called the motion vector field.
The prediction error, defined in (2), is the difference
between the coded frame and the prediction frame F, (x,y).

E(x,y)=1,(x,y)=F,(xy) ¥))

The prediction error is compressed and sent to the

decoder together with the motion vector field. The operating

principle of motion compensated encoders is to minimise the
prediction error.

To indicate that the compression of the prediction error is

typically lossy, the recomstructed (coded and decoded)

prediction error is denoted as En (x,y). In the decoder, the

reconstructed frame, defined in (3), is predicted according to
(1) and then the reconstructed prediction error is added.

Iey)=R[x+d (x,y),y+d,(x,y)]+
E (%)

Fig. 1 illustrates the operating principle of a video
encoder based on motion compensated prediction.

ey~ Ef(x¥ | Prediction Error
Q Coding l

(3

N

Prediction Error
Pixy Decoding
= (&
y Exy |2
3 A
NI/ A
[NE3Y ] =
l Frame Memory g
R x)
Motion Compensated
Prediction
motion information T »
Motion Vector Field
Coding

T

» Motion Estimation |

Fig. 1. A video encoder using motion compensated prediction.

B. Motion Vector Field Modeling

Frames in a typical video sequence contain a number of
objects with different motion. Therefore, motion
compensated prediction is usually performed by dividing the
frame into several segments and estimating the motion of
these segments between the current and the reference frame,
If block-shaped segments are used, this estimation procedure
is called block matching.

A popular way of dividing the frame into segments is to
initially create 16x16 macroblocks, which can be further
split in 8x8 blocks.

The motion vectors of the pixels in each segment S, can

be modeled using a parametric function:
mi2

dx (ak,x, y)= Za,’fi(xv Y),
z @

d,@on= Yafny

i=mi2+1
where only the parameters a, = (a;,a,,....a,,) , called
motion coefficients, have to be transmitted to the decoder.
The motion field basis functions f; are known both to the

encoder and the decoder.

A simple example of a motion model based on
polynomial basis functions is the translaticnal motion model
(m=2, fr=f=1 in (4)), which is commonly used [14], [13]:

df,xy)=a, d/(a,xy)=a,. 6

This kind of motion model can describe only translations

of blocks and yields a large prediction error in the presence
of non-translational motion such as rotation or zoom.

C. Motion Estimation
The role of motion estimation is to calculate the motion
cocfficients a, for a given segment S, so as to minimise

the measure of prediction error for this segment. A
commonly used measure of prediction error is the Sum of
Absolute Differences (SAD) defined in (6).

Y[ )R, (x+d @, x),y+d, @1 )| ©
(x,y85,

The calculation of the SAD is usually a dominant
operation during the motion estimation.

A popular technique used to reduce computational
complexity and to provide potentially better motion vectors
is to use hierarchical motion estimation [3]. Following the
same principle as in motion estimation using multiresolution
image pyramid [5], the reference and current frames are low-
pass filtered and subsampled (smoothed) in both the
horizontal and vertical direction by a factor of two, for
example. In a 2-level hierarchy, motion estimation is
performed first on the smoothed versions of the frames, and
the result is fed to the motion estimation stage using non-
smoothed frames.

D. Image Interpolation

If motion vectors can have ncn-integer values during the
motion estimation, there will be a need to evaluate the pixel
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values at non-integer locations.

Bilinear interpolation (1-D interpolation applied to 2-D
data) is needed if the half-pixel precision is used during the
motion estimation, as described in Fig. 2. */” indicates
division by truncation.

A B
X O'J X
X Integer pixel position
o o QO Half pixel position
[ d
b=(A+B+1)/2
x x c=tA+CH /2
c D d=(A+B+C+D+2)/4

Fig. 2. Half-pixel prediction by bilinear interpolation [14].

Bilinear interpolation can also be used in hierarchical
motion estimation. The typical calculation used to perform
the subsampling is Y =(A+B+C+D+2)/4 as

illustrated in Fig. 2 above.

E. Motion Vector Field Coding

A common way to code the motion vector field is to use
Variable Length (Huffman) Coding (VLC), which encodes
the data as a stream of variable-length symbols based on
statistical analysis of the frequency of symbols.

F. Prediction Error Coding

The Discrete Cosine Transform (DCT) is a very widely
used method for the coding of the prediction error. The most
usual block size is 8x8. An important issue during the
implementation of the IDCT (Inverse DCT) is the accuracy.
For example, an H.263 encoder should meet the accuracy
requirements stated in Annex A of [14]. If an
implementation of the IDCT is not accurate enough, the
resulting error will cumulate to the subsequent frames.

Encoders create an encoded bit stream based on the data
after the DCT and quantization. A popular way to do this is
to use VLC.

G. Other Operations

1) Motion Compensation of B-frames
In MPEG-2 encoded video streams, bidirectionally
predicted B-frames are used frequently. During the motion
compensation of B-frames, the averaging of two pixel values
is required. The accuracy of the calculations during the
motion compensation is important, especially for encoders,
since their local decoder should track the operation of the
decoder.
2) Colour Conversion
Both encoders and decoders use colour conversion. Often
encoders receive data in a format other than what they can
directly encode (non-compatible chrominance space,
interleaved vs. planar data, etc.). Decoders sometimes have
to write the decoded picture to the memory of a graphics
card in a colour space (e.g., RGB) other than the colour
space that naturally is produced from the decode (e.g.,
YUVY); this also requires a colour conversion.

3) Block Edge Filtering

One technique to reduce blocking artifacts in a coded
frame is to use a block edge filter, as in one of the optional
coding modes of H.263 (Deblocking Filter mode (Annex J)).
This specific filter operates on the picture that is used for the
prediction of subsequent pictures and thus lies within the
motion estimation loop. The filtering is performed on 8x8
block edges.

1. ADVANCED VIDEO CODECS

Advanced codecs, such as MVC [15], [18], H.263++, and
H.26L, offer improved coding efficiency compared to
general codecs presented in the previous section. However,
their computational complexity is significantly higher than
that of general codecs.

A. Motion Compensated Prediction

Motion compensated prediction is widely used in both
advanced and general codecs,

B. Motion Vector Field Modeling

An advanced example of a motion model based on
polynomial basis functions is the affine motion model (m=6,
==, fi=fs=x, fi=fe=y in (4)), in which the values of
motion vectors are given by (7).

d.(a,,xy)=a +tax+a,y, 7
d,(a,.x.y)=a, +tax+ayy

The affine motion model is capable of describing rotation,
change of scale and translation at the same time [32]. Thus,
the affine motion model gives a more realistic
approximation of the changes taking place in image
sequences compared to the translational model.

The affine motion model has been studied in the ITU-T
{International Telecommunication Union,
Telecommunication Standardisation Sector) study groups
focusing on the development of the next version of the
H.263 standard (H.263++) as well as the H.263L standard
[171, [15].

C. Motion Estimation

In addition to the SAD, another commonly used measure
of prediction error is the Sum of Square Differences (SSD)
defined in (8).

Y, (5 y)-R (x+d, (@, %),y +d (@, %)) &
(x,YES,

Equation (8) is a multidimensional non-linear function.
There are no techniques that always find its absolute
minimum and have an acceptable computational complexity.
So-called differential algorithms such as Gauss-Newton are
usually used to minimise such functions [7].

The Gauss-Newton (GN) algorithm assumes that the
function to be minimised can be locally approximated by a
quadratic function of the parameters. Due to this assumption
it can converge only towards local minima, unless the initial
parameters lie in the attraction domain of the global
minimum. Thus, it is necessary to feed this algorithm with a
sufficiently good initial guess of the actual optimum.

Block matching is one of the methods that can be used to
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feed the Gauss-Newton algorithm with an initial guess.

Another technique that can be used to imprgve the
convergence of the Gauss-Newton algorithm is 2-level
hierarchical motion estimation (see Section IL.C).

The convergencé can also be improved by repeating
motion estimation and segmentation (Split Decision in Fig. 4
below) recursively, until the minimum size of the block
(e.g., 8x8) is reached or the prediction error is below a
certain threshold.

Fig. 3 shows how the above-mentioned methods are
combined into an advanced motion estimation scheme.

Initial estinate| | Block meeching (| Zevo moticn

—
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Fig. 3. Block diagram of an advanced motion estimation scheme [15].

D. Image Interpolation

One interpolation technique that works well with the
above mentioned motion estimation scheme is called cubic
convolution interpolation [22]. The Gauss-Newton method
requires first derivatives of the reference frame at non-
integer coordinates, and it works much better if the
derivatives "are continuous. Thus, bilinear interpolation
cannot be used. See [21] for details about selecting the
interpolation technique.

E. Motion Vector Field Coding

Since the complexity of motion usually varies between
frames and between segments, the complexity of motion
model should also vary to accurately model the motion.
Thus, the affine motion model can be adapted so that some
less significant motion coefficients of a segment are
removed.

An adaptive motion vector field coding system together
with the motion estimation scheme presented above is
shown in Fig. 4.

Initial Macroblock
Division

" Motion Vector Field

i Motion Estimation {i Coding

N . b Motion Motion J
Motion | Split LL.¥.parametart— Model H
Estimationy | Decision, it | Prediction|  |Adaptatior

oeticien
Pradiction Information

Fig. 4. Block diagram of motion estimation and motion vector field
coding,

The goal of Motion Vector Field Coding is to find, for
each segment, the motion model that minimises the
distortion subject to the total bit budget constraint. The
distortion D is defined as the square error between the

original and the coded frame and the rate T is equal to the
number of bits spent on coding this frame, i.e., on coding the
motion coefficients and the prediction error. This
optimization problem is equivalent to minimising the
Lagrangian cost function defined in (9).
L=D+AT ©)

The parameter A is the rate-distortion trade-off
parameter supplied from higher level controls such as the
rate control mechanism.

In order to find the optimal solution to this cost function,
a computationally expensive exhaustive search is required.
However, approximate solutions are described in the
following. '

1) Matrix Representation of the Motion Vector Field

Encoding the motion vector field will require obtaining
motion coefficients for each segment in a frame with
different combinations of motion models. It would be very
computationally expensive to minimise each time the
prediction error function using iterative, differential
techniques. Therefore, a new representation, defined in (10),
of the motion vector field is calculated at the beginning of
motion vector field coding. It can be used later to calculate
motion coefficients more efficiently.

The prediction error function, defined in (8), can be
approximated as

T
(Ekak _yk) (Ekak _Vk) (109)
Let us order all the P pels belonging to the segment S, and
denote their co-ordinates as (x,. , y,.) . The ith row of matrix

E, is then given by
R, (x,i ’ )”i) R, (x’i ) )”i)
o 2
and the ith element of vector v, is equal to
aR X, 9, .!
In(xi’}’i)'{'_n('éx_y‘)df(ac x; yij-l-

k>
LD )R )

where A ® B denotes the Kronecker product of the two
matrices. The approximation (10) is easier to minimise than
the original prediction error function (8) (see [15] for the
details). This minimisation involves calculation of partial
derivatives and solving a set of equations using the method
of normal equations (which includes, e.g., building a least
squares system, Cholesky factorization of a matrix, and
solving of matrix equations by back substitution, see Section
V.A).

@l x vl
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2) Motion Model Adaptation

The goal of Motion Mode! Adaptation is to find, for each
segment, the subset of the affine model basis functions and
their corresponding motion coefficients as to minimise the
Lagrangian cost function of this segment. In this phase, also
INTRA and NOT CODED coding modes (in addition to
INTER) for the segment could be considered. See [15] for
further details.

The Motion Model Adaptation can be carried out for each
segment independently.

For an efficient implementation of Motion Model
Adaptation, it is essential to apply a low complexity method
to 1) approximate the increase of the prediction error and 2)
re-estimate motion coefficients when one of the basis
functions is removed. The details of implementation of this
kind of method are described in [20]. This implementation
requires the calculation of the Givens rotation [9], for
example.

3) Motion Parameter Prediction

Motion coefficients can be predicted from the block
above or left of the block being currently coded, for
example.

F. Prediction Error Coding

Since the prediction error has usuvally a statisticaily
varying nature, it is very difficult for a single coding method
(e.g., 8x8 DCT) to represent it. This has been taken into
account when preparing the proposals for the future ITU
video coding standard called H.26L. Telenor’s proposal
suggests the use of 7 different block sizes (16x16, 16x8,
8x16, 8x8, 8x4, 4x8, 4x4) for the DCT-coding of the
prediction error in motion compensated prediction [16].

In addition to multi-shape DCT, diagonal KLT
(Karhunen-Loeve Transform) has been found efficient for
the coding of prediction error [15].

IV. VIDEO CODING WITH MEDIA ISA EXTENSIONS

Media ISA extensions commonly found in general-
purpose processors can be divided into four categories:
SIMD fixed-point instructions, SIMD floating-point
instructions, special-purpose SIMD fixed-point instructions,
and cacheability control instructions. Table I shows an
example of media ISA extensions, excluding (general-
purpose) SIMD fixed-point instructions.

SIMD floating-point instructions usually operate on a set
of 128-bit or 64-bit registers, which are used to store the
corresponding packed data type, namely four or two 32-bit
single-precision numbers, respectively. These instructions
operate on either all, or the least significant pairs, of packed
data operands in parallel.

This section describes how several video coding and
image processing operations can benefit from media ISA
extensions, excluding SIMD fixed-point instructions. The
use of SIMD fixed-point instructions in video coding is
studied in [24], [4], and [27], for example.

TABLE 1
AN BXAMPLE OF MEDIA ISA EXTENSIONS [28]

Chtegory Instuctions Packed  Scalu Packed

SPOSPHP integer

Arthmetic | ADD, SUB, MUL, DIV, MAX, MIN, X X
SQRT, RCP, RSQRT X X
Logical AND, ANDN, OR, XOR X
Comparison |CMP X X
COMI, UCOMI X
Data MOVAPS (foad/store aligned) X
movement  |MOVUPS (load/store unaligned) X
MOVLPS, MOVLHPS, MOVHPS, X
MOVHLPS X
MOVMSKPS X
MOVSS (load/store) X
Shuffle SHUFPS, UNPCKHPS, UNPCKLPS X
Conversions [CVTSS2SL, CVTTSS2SI, CVTSE2SS X
CVTPIPS, CVTPS2PL CVTTPS2PI X
State FXSAVE, FXSTOR, STMXCSR, X
management (LDMXCSR X
Special- PINSRW, PEXTRW, PMULHU, X
purpose PSHUFW, PMOVMSKB, PSAD, X
(fixed-point) |PAVG, PMIN, PMAX X
Cacheability [MASKMOVQ, X
control MOVNTQ (aligned siore) X
MOVTPS (aligned store) X
PREFETCH
SFENCE

A. SIMD Floating-Point Instructions

One way to implement SIMD instructions operating on
128-bit packed data, is to treat each 4-wide computaticnal
macro-instruction as two 64-bit microinstructions. However,
in a superscalar processor (e.g., two execution ports), a full
4-wide SIMD operation can also be done every clock cycle,
assuming instructions alternate between two asymmetric
execution ports (e.g., add-multiply-add-multiply). With this
approach, 128-bit SIMD calculations can theoretically
achieve a full 4X performance gain; 2X is a more realistic
gain in practice, partly because of micro-instruction pressure
in the microarchitecture. However, this emulation of 4-wide
SIMD calculations is not an efficient implementation for
scalar operations. Thus, there are usually explicit scalar
instructions, which can execute only a single micro-
instruction [28].

While traditional video coding operations usually do not
include frequent floating-point calculations, 3D applications
calculate using floating-point numbers extensively. It is
reported that SIMD floating-point ISA extensions can boost
the performance on 3D kernels (transformation and lighting)
over 2X (1.4X to 2.75X) that of optimized scalar code [33].

This study reports a 1.42X kernel-level speedup for a
routine that uses arithmetic SIMD floating-point
instructions, operating on packed data, see Section V1.

A considerable speedup can also be achieved using the
approximation instructions: RCP (Reciprocal) and RSQRT
(Reciprocal of the SQRT). These instructions are less precise
(e.g., 50% less bits in mantissa) but much faster (e.g.,
9X/15X in terms of latency) than the DIV/SQRT
instructions. A greater precision is also available (e.g., 92%
that of DIV/SQRT), when using the approximation
instructions with the Newton-Raphson (NR) method [11].
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For the reciprocal operation, the NR method involves two
multiplies and a subtraction. Thus, the overall latency and
especially the throughput for the NR method are lower than
for DIV/SQRT, which usually have a poor throughput [12].

It should be noted that these approximation instructions
could also make scalar operations much faster than
DIV/SQRT. This study reports kernel speedups of 1.80X
and 1.72X for a combined use of the RCP and RSQRT
instructions (with the Newton-Raphson method) operating
on scalar data. Additionally, a kernel speedup of 1.26X for
the use of the sole RCP instruction operating on packed and
scalar data is reported. See Section VI for the details.

B. Special-purpose SIMD Fixed-Point Instructions

Video coding operations can benefit significantly from
several instructions in this category. These instructions
operate typically on 64-bit packed integer data.

Every video encoder, which uses the SAD as an error
measure, can benefit from the Packed SAD (PSAD)
instruction, which calculates the SAD for, e.g., 8 pixels at a
time. This instruction has been found to increase the
performance of the motion estimation in an MPEG-
1/MPEG-2 encoder by a factor of two [28].

This study reports a 1.56X kernel-level speedup for a
routine that utilises this instruction, see Section VI.

The B-frame motion compensation component in an
MPEG-2 video decoder can benefit from the Packed
Average (PAVG) iunstruction. This instruction performs the
averaging operation (using 8-bit or 16-bit accuracy, for
example) by rounding the result to the nearest integer as
required by the MPEG-2 specification. The use of this
instruction could enable a 25% kernel speedup and a 4 to
6% application level speedup [28].

Subsampling in the hierarchical motion estimation as well
as in the motion estimation with half-pixel precision are
sped up using the PAVG instruction. While one PAVG
instruction performs 2-value averaging, it is possible to use
three PAVG instructions to approximate 4-value averaging
with an accuracy of 87.5% as shown in the following
pseudo-code [1]:

Y = pavg(pavg(A,B), pavg(C,D)-1).

The Packed Shuffle (PSHUFW) instruction can be used to
rearrange the data within a register. It can perform rotate,
shift, swap, and broadcast operations on 16-bit data, for
example. Without this instruction, several instructions are
needed to perform these kind of operations (e.g., broadcast
required three instructions).

This study reports speedups of 1.05X to 1.06X for DCT
routines operating on different block sizes while utilising
PSHUFW as the only special-purpose fixed-point
instruction.

The Packed Minimum (PMIN) and Packed Maximum
(PMAX) instructions can be used to clip the data values into
the desired range such as [0,255]. Note that the clipping can
be performed without conditional branching, which could be
unpredictable. Block edge filtering specified in the

Deblocking Filter mode (Annex I) of the H.263 standard
benefits from these instructions, because clipping is a
dominant operation during the filtering operation.

During the VLC, especially in the case of B-frames, there
are often many zero values that must be detected and
omitted, To simplify this kind of data-dependent branching,
the Move Byte Mask to Integer (PMOVMSKB) instruction
can be used to evaluate eight values as shown in the
following pseudo-code [1]:

pXOT mm7, mm7 // zero mm?7

movyg mm0, [esi] // get eight Q values
pcmpegl  mmd, mm7 // find zeros
pmovmsklb eax, mm0 // 8 flags into eax

If eax holds OxfT, then all eight values are zero.

C. Cacheability Control Instructions

These instructions usually include prefetching and
streaming store instructions. In the following, an example
implementation of both the prefetching and streaming store
instructions (in a 2-level cache hierarchy) is briefly
described.

The prefetch instructions are used to load data ahead of
use, thereby hiding load latency so that the CPU can take
full advantage of memory bandwidth. If the processor loads
data to cache when a cache line is written to, prefetches can
also reduce latency for storing data. To get the most efficient
use of prefetch, loops should be unrolled so that each
iteration prefetches and processes the same amount of data
(e.g., one cache line).

The prefetch instructions are usually most useful for
memoty bound applications, whose working set of data is
non-temporal (i.e.,, read and used once before being
discarded) and does not fit into the cache. The Non-
temporal Prefetch (PREFETCHNTA) instruction fetches
data only into the L1 cache (closer to the processor than the
L2 cache), thus not filling the 1.2 cache with non-temporal
data. The Temporal PrefetchQ (PREFETCHTO) fetches data
into both the L1 and L2 caches while the Temporal
Prefetchl (PREFETCHTI) fetches data only into the L2
cache. PREFETCHNTA avoids some overhead incurred
when data are also loaded to the L2 cache (as usually occurs
with normal load and store).

For encoders, colour conversion is typically a memory-
bound operation. It loads picture data from main memory,
performs some (typically simple) calculation, and writes the
data back out to memory, The PREFETCHNTA instruction
can speed up colour conversion by bypassing the L2 cache
on the load. This prefetch is often the best prefetch for
colour conversion since the input will not be needed again
by the codec. The store can then be performed using a
normal store instruction so that the picture resides in the L2
cache after the colour conversion.

This study reports a speedup of 1.12X for a routine
utilising the PREFETCHNTA instruction, see Section VL.

PREFETCHT! could be used to load the L2 cache with a
data set larger than can fit in the L1 cache. Meanwhile a
CPU speed-limited algorithm could be executing and
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randomly accessing data. As it proceeds, it would find more
and more of its data in the L2 cache.

Motion compensation in video decoders is often a
memory bound operation. PREFETCHNTA and
PREFETCHTO have both been observed to provide a
speedup. Which one offers the best improvement is
dependent on how the decoder is implemented. For decoders
that are writing the decoded picture to a graphics card
memory, streaming store instructions can offer a benefit by
not polluting the caches with non-temporal data.

The streaming store instructions can be used to write
results to the destination memory buffer without going
through the cache hierarchy. The programmer should
consider the possible write combining of the processor,
when using these instructions, because any access to
memory or the L2 cache can cause premature flushing of the
write-combining buffers. This results in inefficient use of the

memory bus. Thus, while writing out results with the.

streaming store instructions, data should only be read from
the L1 cache, to avoid this performance penalty [12].

V. PERFORMANCE EVALUATION METHODOLOGY

A. Workloads

The encoder described in Section IIl is used as a
benchmark application and some of its most time-consuming
routines as kernels. Both the application and kernels have
been implemented in three versions: C, FXP (coded with
fixed-point ISA extensions [26]), and FLP (coded with
floating-point ISA extensions [28]). Only the FLP version
can use the approximation instructions (Reciprocal and
Reciprocal of the SQRT), the special-purpose fixed-point
instructions (e.g., Packed SAD and Packed SHUFFLE) and
the prefetching instructions. Most of the kernels represent
typical, generally used video. coding/image processing
operations such as DCT, SAD calculation, and FIR filtering.

A freely available software library [10] offers a variety of
image processing and DSP routines that are optimized in
assembly language. However, they are made for general use
and thus, the performance is not necessary the same as that
of the hand-coded routines optimized for a specific purpose.
See [4] for the evaluation of some of the routines in this
library.

All kernels in the FXP and FLP vetrsions are hand-
optimized either in assembly . language (using inline
assembly) or using intrinsics [31], if not otherwise
mentioned. The kernels are described in the following.

1} Subsampling Filter

This routine applies an 8-tap 1-D FIR filter in both
horizontal and vertical directions on an input image. While
filtering, the routine also performs subsampling by a factor
of two (by skipping every second pixel) in both directions as
well. It uses fixed-point numbers having precision of 14
fractional bits (the filter coefficients).

The FLP version differs from the FXP version by utilising
two PREFETCHNTA instructions in an unrolled loop; one
in the beginning (prefetches input data 32 bytes ahead of the
current iteration), another in the middle of the loop

(prefetches 64 bytes ahead). One iteration processes 38
bytes of the input image. It was not trivial to process the
optimal amount, one cache line (32 bytes), of data in one
iteration. The non-temporal prefetch is the best choice since
the input image is not needed after the filtering (in the near
future). The optimal prefetch distance of 32 bytes was
experimentaily obtained.

There is no difference in calculation resolutlon between
the three versions; all obtain exactly the same results

2} Build Least Squares Equation ‘

The Motion Vector Field Coding algorithm presented in
Section IILE obtains the parameters for its affine motion
model by minimising the mean square error (MSE) between
a block in a reference frame and a block in a current frame.
This involves building and solving a least-squares system of

equations (of form C,a, =d, )}(k=6). This kernel builds
K%k k

the Jeast-squares matrix (C, = E:E « ) for each pixel in a

(8x8) block, for which the motion parameters are being
estimated. The matrices are then summed together to obtain
the complete system matrix for a block. This system is
subsequently solved using back substitution, as described
below. -

The kernel utilises floating-point arithmetic most of the
time to avoid round-off error accumulation, which is usually
a problem when the input data have a large dynamic range.
Due to this extensive use of floating-point arithmetic, fixed-
point ISA extensions cannot be widely used in the FXP
version. Thus, the FXP version is coded using mainly scalar
assembly language. The FLP version takes advantage of
packed addition and multiplication instructions, which are
very well suited for calculating matrix sums and products.

3) Cholesky Factorization
This kernel performs Cholesky factorization of a (6x6)

input matrix (Ck ), ie., calculates the upper triangular

output matrix (U, ) such that U:U,c = C, (k=6) [9]. This

involves computations of the reciprocal of the square root
following by the reciprocal.

The FXP version is coded using C and the FLP version is
coded using intrinsics. In this case, no essential gain is
expected for using assembly.

The C version uses 64-bit floating point' numbers. The
EXP version uses 32-bit floating point numbers internally,
but the input and output values use the 64-bit precision. The
FLP version operates on scalar data and uses the
approximation instructions and the Newton-Raphson (NR)
method. The precision of these calculations is effectively
one bit less than those of the FXP version.

4) Back Substitution

This routine obtains a, =(a1,a2,...,am)T by solving
the following equation by back substitution: U,a, =z,

(m=6) [9]. This involves several computations: divisions,
additions, multiplications, and subtractions.

Again, the FXP version is coded using C and the FLP
version is coded using intrinsics.

The C version uses 64-bit floating-point numbers. The
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FXP version uses 32-bit floating-point numbers when
calculating the reciprocals. The FLP version operates on
packed and scalar data and uses the approximation
instructions.

5) Givens Rotation

The Givens rotation can be used to triangularize a matrix
by zeroing matrix elements in a row one at a time. This
routine performs this rotation, which involves, e.g., the
following calculations: addition, multiplication, and division
followed by the reciprocal of the square root [9].

The calculation resolutions for the C and FXP versions
are identical to those of the Cholesky Factorization routine
as well as the coding methodologies for the FXP and FLP
versions (C and intrinsics, respectively).

The FLP version obtains its speedup by using the RCP
instruction (with the NR method) and the RSQRT
instruction (without the NR method), operating on scalar
data.

6) Block Maiching

Block matching is used to find the initial motion vector
for a (4x4) block. This motion vector is then fed to the affine
motion search process, Block matching is performed on a
subsampled image. Block matching starts with the
evaluation of the zero motion vector, after which the full-
search is performed. Partial error check is performed after
every eight pixels during the error computation. The range
of motion vector components is limited: from -15 to 15.

Error is evaluated as a Sum of Absolute Differences
(SAD). The FLP version utilises the Packed SAD
instruction, while the FXP version must replace that
instruction by several other instructions. '

7) 8x8 and 4x8 DCT

Separable, direct matrix multiply 2-D DCT with
factorization optimizations is used: Faster DCT algorithms
cannot be used, since high .accuracy is required.
Additionally, fast scalar algorithms require lots of data
reorganising within registers when packed instructions are
used.

The FLP and FXP versions are almost identical except
that the FLP version utilises Packed SHUFFLE instruction
for reversing the order of input data. This operation requires
four FXP instructions but only a single FLP instruction.

B. Experimentation Environment

The hardware environment consisted of a PC based on a
733 MHz processor’ with 256 MB of memory. The size of
the on-chip L2 cache was 256 KB. The bus speed was 133
MHz. ‘

The benchmark application was run in a commercially
available operating system3. It was compiled using two
compilers: one* for compiling all the files containing FLP
code, the other® for compiling rest of the files (compiler
optimizations for both compilers were targeted at

? Intel Pentium IH (Coppermine) with the Intel 82820 AGPset chip set.

3 Microsoft Windows NT 4.0 (build 1381) with Service Pack 5
installed.

* Intet C Compiler 4.0.

% Microsoft Visual C++ 5.0,

maximising speed). During the measurements there was a
minimum computational load caused by other programs. In
addition, the priority of the encoder process was set to the
maximum value. This was done by calling the following
functions provided by the operating system: SetPriorityClass
and SetThreadPriority with parameters
REALTIME_PRIORITY_CLASS and
THREAD_PRIORITY_TIME_CRITICAL, respectively. To
obtain some more detailed kernel-level results, a
commercially available performance analyser (profiling
tool)® was used.

Three original, uncompressed QCIF-sized (luminance
resolution: 176x144) sequences, Akiyo, Mother and
Daughter, and Carphone, were used. These sequences were
selected from a set of standard test sequences that were used
during the development of video coding standards ITU-T
Recommendation H.263 [14] and MPEG-4 [13].

C. Performance Metrics

Two different performance comparison tests were
executed. During the first test, all test sequences were
encoded with a set of bit rates (8, 14, and 24 kbps) using all
three versions. First 300 frames of all sequences were
encoded with target and reference frame rates of 8.33 (25/3)
fps and 25 fps, respectively. The rate control of the encoder
resulted in a constant target frame rate, i.e., the total amount
of encoded frames was constant. To make the comparisons
as fair as possible, the different implementations always
encoded exactly the same frames (every third frame of the
original sequence). The encoding speed (in frames/s) was
measured by using the ANSI C clock function.

Due to the different nature of test sequences, a unique set
of target bit rates was selected for each sequence. The GSM
HSCSD network offers 14.4 kbps and 28.8 kbps channels,
for example. In a typical video phone application, 8 kbps is
reserved for video in case of 14.4 kbps, and 22-24 kbps in
case of 28.8 kbps [6].

This test demonstrated the application-level speedup of
the FLP version. Differences in video quality between the
three versions were also measured, in terms of luminance
PSNR (Peak Signal to Noise Ratio).

During the second test, Carphone was encoded with a
target bit rate of 24 kbps using the FXP and FLP versions.
The average (total execution time divided by execution
frequency), minimum, and total (cumulative) execution
times of the optimized routines were measured. This test
demonstrated the speedup of each individual routine. The
execution time of each optimized routine (in processor clock
cycles) was measured using a special instruction (Read from
Time Stamp Counter), which returns clock cycles (more
accurate,than the ANSI C clock function).

This study also reports the instruction level characteristics
of the kernels. The number of static assembly instructions
(static code size) as well as the percentage of dynamic FLP-
specific (packed and scalar), FXP-specific (includes special-
purpose instructions), and other assembly instructions were
measured. In this context, a dynamic instruction is an

8 Intel Vtune Performance Analyzer 4.0.
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instruction, which is retired (committed) during the actual
run-time of the program. Because the processor used in this
study provides speculative execution, the number of retired
instructions could be smaller than that of executed
instructions. These values were measured with the
performance analyser mentioned above.

In order to reduce the influence of, e.g., disk caching on
the execution time, the same sequence was encoded three
times in a row. The average values and standard deviation
were  calculated. If the standard deviation exceeded a
certain threshold for a specific case, one or more new
executions were performed, until the standard deviation was
below the threshold. In the first test, the harmonic mean of
the encoding speed was used instead of the arithmetic mean
used in the second test. The harmonic mean of the encoding
speed was chosen, because the arithmetic mean can be
justified for the reciprocal of the encoding speed (measured
in frames/s) [19].

VI. RESULTS

A. Kernel-level Analysis

Table II shows the number of static assembly instructions
as well as the percentage of dynamic FLP-specific, FXP-
specific (includes special-purpose instructions), and other
assembly instructions (includes prefetching instructions).

TABLE II
STATIC AND DYNAMIC INSTRUCTIONS

The FLP version provides reductions in the static code
size for the following kernels: Block Matching (20%), DCT
8x8 (8%), DCT 4x8 (9%), and Back Substitution (11%).
The reductions are due to the use of special-purpose
instructions (PSAD and PSHUFW) and packed SIMD
calculations (in Back Substitution). The static code size is
increased for the rest of the kernels (the increase is
insignificant for Subsampling Filter): Build Least Squares
Equation (118%), Cholesky Factorization (7%), and Givens
Rotation (27%). The increases are due to the use of the
Newton-Raphson method (Cholesky Factorization and
Givens Rotation) and extensive loop unrolling (Build Least
Squares Equation).

Table III shows the average, minimum and total execution
times, as well as the average speedup for each kernel, when
encoding Carphone (in QCIF) at 8.33 fps and 24 kbps. The
average and minimum execution times are reported for one
execution of each kernel. Two subsequent rows contain
information on each kernel, the upper reporting the FLP
version, the lower the FXP version. The kernels are sorted
by total execution time (of the FXP version, in descending
order), i.e., the most time-consuming kernels of the encoder
are listed first.

TABLE 111
AVERAGE, MINIMUM AND TOTAL EXECUTION TIMES, AND AVERAGE
SPEEDUP FOR EACH KERNEL

Routine Ver- Static Dynamic Dynamic Dynamic

sion instr, FLPinstr. FXP instr. other
(in %)} (in %) instr. (in
%)
Build LS Equation FLP 1660 96.98 1.37 1.65
FXP 761 0.00 17.68 82.32
Block Matching FLP 770 0.00 74.12 25.88
FXP 965 0.00 78.97 21.03
DCT 8x8 FLP 178 0.00 81.37 18.63
FXP 193 0.00 81.15 18.85
Cholesky Factoriz. FLP 521 96.66 0.00 ) 3.34
FXP 485 0.00 0.00 100.00
Givens Rotation FLP 62 11.76 0.00 88.24
FXP 49 0.00 0.00  100.00
Back Substitution FLP 184 70.83 0.00 29.17
FXP 206 0.00 0.00  100.00
Subsampling Filt. FLP 720 0.00 66.67  33.33
FXP 718 0.00 67.81 32.19
DCT 4x8 FLP 124 0.00 74.01 25.99
FXP 136 0.00 78.19 21.81

Routine Ver- Average Min. Totaltime Average
sion time (in time{in (in milions speedup
cycles) cycles) ofcycles) vs. FXP

Build LS Ea. FLP 4837 1930 1430.88 1.42
FXP 6869 4067  2063.36 -

Block Matching FLP 4051 73 127.73 1.56
FXP 8330 78 201.56 -

Cholesky Factoriz. FLP 801 460 72.88 1.72
FXP 1031 833 127.29 -

DCT 8x8 .FLP 445 400 119.81 1.05
FXP 4687 425 127.00 -

Givens Rotation FLP 108 64 67.29 1.80
FXP 195 97 123.37 -

Back Substit. FLP 236 71 63.92 1.26
FXP 206 88 81.83 -

Subsampling Filter FLP 367701 353838 72.80 1.12
: FXP 412854 380293 81.75 -

DCT 4x8 FLP 270 212 29.30 1.06
FXP 287 230 31.97 -

Note that in Table II, the column that shows the
percentage of dynamic FXP instructions does include also
the special-purpose SIMD fixed-point instructions, which
are available only in the FLP versions of the kernels. By
using the performance analyser mentioned in the previous
section, it is not possible to separate the special-purpose
SIMD fixed-point instructions from other (general-purpose)
SIMD fixed-point instructions. The FLP versions of the
following kernels utilise none of the FLP instructions but
special-purpose  SIMD fixed-point instructions: Block
Matching, DCT 4x8, and DCT 8x8.

The average speedup on kernels ranges from 1.05 to 1.80.
The average kernel-level speedup is 1.37X (arithmetic
mean). The speedup based on weighted means (execution
frequencies as weighting factors) is 1.49X. This shows that
in the case of the benchmark application used in this study,
the kernels having better speedup than the average speedup
(1.37X) are executed more frequently than those having a
lower speedup.

The share of the total execution time for these kernels is
27% for the ELP version and 35% for the FXP version.

The routines using SIMD floating-point calculation
(Build LS Equation and Back Substitution) have speedups
close to the average speedup: 1.42X and 1.26X%,
respectively. However, routines which use the floating-point
approximation (RCP and RSQRT) and special-purpose
fixed-point instructions (PSAD) achieve the highest
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speedups. They operate on both packed (Block Matching,
speedup: 1.56X) and scalar data (Givens Rotation, speedup:
1.80X). If Block Matching used larger block size than the
current version (4x4), the speedup would be higher because
of better utilisation of the PSAD instruction. Cholesky
Factorization cannot utilise the approximation instructions
as effectively as Givens Rotation. Thus, the speedup, 1.72X,
is a bit lower. Back Substitution operates on packed data
and it does not calculate any square roots but reciprocals.
Thus, the speedup (1.26X) is lower than what could be
achieved when calculating square roots with the
approximation instructions.

The DCT routines cannot use special-purpose instructions
extensively; they use only PSHUFW. Thus, the speedups are
low, 1.06X and 1.05X for DCT 4x8 and DCT 8«8,
respectively. The low speedup of Subsampling Filter
(1.12X) is because of the small working set. For QCIF-sized
frames, 65% of the luminance data fits into the L1 cache
(16K). Thus, prefetching does not help as much as for CIF-
sized frames, for example.

The reason for almost similar minimum execution times
for both versions of the Block Matching kernel is the use of
branches for some special cases. When these branches are
taken, the function makes an early exit without executing all
of the optimized code.

B. Application-level Analysis

Table 2 shows the enceding speeds and the average values
(harmonic mean) of all eight cases for each version, when
encoding the QCIF-sequences at 8.33 fps.

TABLE IV
ENCODING SPEEDS (IN FRAMES/S)

Bit rate Version Akivo Carmphone Mother&Daughter Avg.

8 FLP 21.16 18.85 14.73
kbps FXP 18.79 168.76 13.22
c 5.82 5.42 4.32
14 FLP 17.99 12.84 13.09
kbps FXP 16.47 11.36 11.96
C 5.32 3.50 4.02
24 FLP 18.97 10.66 11.55
kbps FXP 17.49 9.42 10.37
Cc 6.00 3.03 3.61

The average application-level speedup of the FLP version is
1.11X, compared to the FXP version, and 3.41X, compared to
the C version. The ranges are from 1.08X to 1.13X and from
3.17X to 3.65X, respectively.

Table V shows the PSNR (Peak Signal to Noise Ratio)
values of the C version.

TABLE V
LUMINANCE (Y) PSNR VALUES (IN DB) OF THE C VERSION

Bit rate Akiyo _Carphone Mother&Daughter
8 kbos 35,36 31.48
14 kbps 3828  30.81 33.44
24 kggs 41.15 32.58 35,54

On the average, the losses in the PSNR, compared to the C
version, are 0.01 dB (FLP) and 0.001 dB (FXP). The loss
ranges from -0.05 to 0.02 dB (FLP). In practice, this means
that no loss in subjective quality could be observed.

VII. CONCLUSIONS

SIMD floating-point and special-purpose SIMD fixed-
point ISA extensions can be used to speed up common video
coding kernels as well as the affine motion model related
kernels (matrix floating-point computations). These common
kernels include motion estimation (SAD calculation),
motion compensation, image interpolation (e.g., bilinear
interpolation), variable length encoding, colour conversion,
and block edge filtering.

Abel et al. report speedups of 2X for motion estimation,
and application-level speedups of 1.3X when utilising
special-purpose fixed-point ISA extensions {1].

In this study, eight time-consuming kernels of the video
encoder were hand-optimized using SIMD fixed— and
floating-point and special-purpose SIMD fixed-point ISA
extensions as well as cacheability control instructions (the
FLP version). Another version of the encoder was optimized
using only SIMD fixed-point ISA extensions (without
special-purpose instructions) (the FXP version).

For the FLP version, this study resulted in an average
kernel-leve! speedup of 1.49X (weighted arithmetic mean)
and an application-level speedup of 1.11X, when comparing
to the FXP version, and an application-level speedup of
3.41X, when comparing to the C version.

In this study, the kernels optimized in the FLP version do
not consume a large fraction of the execution time (about
27%), because the encoder has already been extensively
optimized for the FXP version. Thus, the application-level
speedup is limited by that fraction and the kernel-level
speedup of 1.49X corresponds to the application-level
speedup of 1.1X (Amdahl's Law). Applications, which are
able to exploit the prefetching instructions more frequently,
could achieve higher speedups than those reported in this
study.

The processor used in this study shares a number of
fundamental similarities with the floating-point media ISA
extensions proposed for other processors [2], [81, [29], and is
representative of the media ISA extensions used in modern
general-purpose processors.
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