
Compositional Verification of a Third Generation Mobile Communication
Protocol

Sari Leppänen
Nokia Research Center

Mobile Networks Laboratory
P.O.Box 407, 00045 Nokia Group, Finland

Sari.Leppanen@Nokia.Com

Matti Luukkainen
University of Helsinki

Department of Computer Science
P.O.Box 26, 00014 University of Helsinki, Finland

mluukkai@cs.helsinki.fi

Abstract

Model-checking has turned out to be an efficient and re-
latively easy-to-use technique in the verification of formally
described programs. However, there is one major draw-
back in using model-checking: the state explosion, i.e., the
behavior models of real-life programs tend to be extremely
large. In the article it is shown how the theories of beha-
vioral equivalences with a compositional style of behavior
model generation can alleviate the state explosion in veri-
fying the externally observable properties of SDL descrip-
tions. The practical usability of the method is evidenced
with a case study that is taken from ongoing development of
third generation mobile communication systems.

Keywords

Formal verification, model-checking, Compositional
methods, SDL Communication protocols, UMTS

1. Introduction

Testing and debugging concurrent and reactive pro-
grams, such as communication protocols, is an extremely
tedious task, partly due to the nondeterminism caused by the
computation environment. If a program is described with a
formal language, such as SDL [10], the behavior of the pro-
gram can be defined by means of a mathematically defined
structure, such as abehavior graph, which describes all the
possible computation sequences of the program. The more
general termstate spaceis often used when talking about
behavior models of programs.

If the correctness requirements of a formally defined pro-
gram are given in a mathematical notation, such as tem-
poral logic [24, 4] or state automaton [15], an algorithm
calledmodel-checker[5] can be used to check whether the

program respects its correctness requirements. The model-
checker goes through every possible computation sequence
of the program, thus it is said to be anexhaustiveverification
technique. Because all the possible execution sequences are
covered, model-checking gives a total confidence of the pro-
grams’ correctness.

Model-checking has turned out to be an efficient and
easy-to-use technique in program verification. However,
there is one major drawback in using exhaustive model-
checking: behavior graphs of real-life programs, telecom-
munication protocols for example, tend to be extremely
large. In literature this problem is often referred to asstate
explosion.

One successful technique in alleviating the state explo-
sion is the ’divide-and-conquer’-like compositional method
of building systems state space (see for example [17, 8,
6]),where the system state space is generated from minim-
ized state spaces of its sub-components. The compositional
method can be particularly efficient if those aspects of the
system that are unnecessary for the verification are abstrac-
ted away. Usually these compositional techniques work in
the context of process algebra, where a synchronous com-
munication paradigm is used. In [13] it was shown how
this technique can be used in the context of SDL, where the
communication is by nature asynchronous.

In this article we apply this compositional technique
to the verification of a third generation mobile commu-
nication protocol. By third generation we mean the fu-
ture mobile systems in theIMT-2000 family(see Figure
1). The core network of the third generation can be con-
sidered as an evolution of second generation systems, based
mainly on GSM. The main difference between second and
third generation systems lies on the radio access tech-
nique. Mainly in Europe and Japan3GPP which is a
standardization forum established by several standardiz-
ation organizations,1 standardizesUMTS (Universal Mo-

1The standardization organizations involved in the creation of 3GPP

WCDMA

Radio Technology Core Network

3GPP:UMTS

GSM based

IS-41

cdma2000

UWC-136 (TDMA)

Figure 1. IMT-2000 family of systems

bile Telecommunications System)using WCDMA (Wide-
band Code-Division-Multiple-Access)radio access tech-
nique. The main objective of 3GPP is to harmonize various
WCDMA specifications and achieve a common WCDMA
standard. Different companies, such as manufacturers and
operators, are members of 3GPP through the respective
standardization organization they belong to.

The article is structured as follows: Section 2 motivates
the use of labeled transition systems as a behavioral model
of SDL descriptions. Section 3 shows how the behavioral
equivalence theories and compositional style of state space
generation could be used in alleviating the state explosion.
In section 4, the compositional method is adapted to the
context of SDL. In section 5 the analyzed protocol is de-
scribed and section 6 shows the results of verification. Con-
clusions are finally drawn in section 7.

2. Externally observable behavior

The behavior of a SDL description can be defined by
means of abehavior graphthat consists of nodes and trans-
itions between the nodes. A node describes a state of the
program (i.e. values of the program variables, contents of
message queues: : :) at one moment of time and transitions
describe the atomic actions (i.e. assignment, sending or re-
ceiving of a message: : :) that change the state of the pro-
gram. Transitions may be labeled with the corresponding
action names. Intuitively, the behavior graph of a SDL de-
scription contains all the possible computation sequences of
the described system. The behavior graph corresponding to
a SDL description can be obtained by interpreting the de-
scription according to the formal semantics of SDL which
is defined in Annex F.1 of the Z.100 standard [11].

When using formal techniques in developing reliable
software, good tool support is extremely important. Com-
mercial SDL tools, like SDT [14] and ObjectGEODE [22]

were ARIB(Japan), ETSI (Europe), TTA (Korea), TTC (Japan) and T1P1
(USA)

offer some means for model-checking-like automatic veri-
fication. However, there is a serious drawback in the model-
checking facility of both the tools. When using exhaustive
model-checking to verify a program, both of the tools save
the complete behavior graph of the program to the com-
puter’s memory. Since SDL descriptions usually comprise
lots of data variables, generation of the complete behavior
graph is extremely memory consuming. Thus, the size of
the programs that can be exhaustively model-checked is
limited.

State explosion is handled within the tools by using non-
exhaustive model-checking methods, such as checking only
some randomly selected computation paths or using the bit
state hash technique of [7]. Drawback of the non-exhaustive
methods is that only part of the computations are checked
and thus, they do not give full confidence about the correct-
ness of a program.

We are sometimes interested only in the external beha-
vior of a system, in other words, the activity of the system
which is visible to an external observer, such as the commu-
nication actions between the system and its environment.
If we specify a communication protocol for example, it is
enough that the service it offers (i.e. the external behavior
visible to the user of the protocol) is consistent with the cor-
rectness requirements of the protocol. Thus, as long as the
protocol behaves as expected, we more or less do not care
how the behavior is achieved.

Externally visible actions of a system specified in SDL
are theinput andoutput statements it uses to communicate
with the environment. The rest of the actions within the
system and its internal state (e.g. values of different
variables) are not interesting if only the external behavior
is concerned. As a consequence, the external behavior of
a SDL description can be captured by a simpler structure
than behavior graph, namely alabeled transition system, or
Lts in short.

A labeled transition system is a quadruple(S;�;�; s0),
where

� S is a set of states,

� � is the set of observable action labels,

� � � S � � [f�g � S is the transition relation, (�
denotes an internal action i.e., an action invisible for
the external observer), and

� s0 2 S is the initial state.

The external behavior of a program is easily modeled
as a labeled transition system, where the transition labels
in � correspond to the external communication events and
the internal action� is used to denote some internal activity
within a program.

3. The Equivalence Theory

With the Lts representation of programs, we have the
possibility of comparing syntactically different programs
with respect to their behavior. Thus, we can check if two
programsP1 and P2 behave similarly, or if a program
Imp l is a ’valid implementation’ of another programSpec.
Next we formally define what is intended by saying that
two programs behave similarly, in other words the concept
of behavioral equivalence is defined. There is a vast amount
of different equivalences in the literature, see for example
[21]. In the following we use the CFFD equivalence
[19, 20] as our notion of behavioral equivalence.

The following customary definitions are used:

� P � a! P 0 means that there is transitiona from state
P to the stateP 0, in other words(P; a; P 0) 2 �.

� P � a! means that there is a stateP 0; such thatP �
a! P 0.

� :(P �a!) means that it is not possible to find a state
P 0; such thatP � a! P 0.

� P � a1a2 : : :an ! Q iff 9P0; : : : ; Pn such that
P0 = P; Pn = Q and8i 2 f1 : : :ng : Pi�1 � ai !
Pi :

� P = b1b2 : : : bn) Q iff P � ��b1�
�b2�

� : : : ��bn�
�

! Q, where�� denotes a finite or empty sequence of
internal actions.

To define the CFFD equivalence, the following concepts
are also needed:

� � 2 �� is adivergence traceof a stateP iff 9Q : P =
�) Q ^ Q � �1 !, where�1 denotes an infinite
sequence of internal actions, and�� an finite sequence
of action names drawn from set�.

� The set of divergence traces of a stateP is denoted by
div(P). Divergence traces of a Lts corresponds to the
divergence traces of its initial state.

� A state P is stable, if :(P � � !). Predicate
stable(P) denotes stability of the stateP . A Lts is
stable if and only if it the initial state is stable.

� Pair (�;A), where� 2 �� andA � � is a stable
failureof stateP , if and only if 9Q : P = �) Q^
stable(Q) ^ 8a 2 A : :(Q� a!).

� The set of stable failures of a stateP is denoted by
sfail(P). Stable failures of a Lts corresponds to the
stable failures of its initial state.

Finally we define the CFFD equivalence relation
between two Lts’s.

Labeled transition systemslts = (S;�;�; s0) and
lts0 = (S0;�0;�0; s0

0
) are CFFD-equivalent,lts1 =CFFD

lts2, iff

� stable(so) = stable(s0
o
),

� sfail(s0) = sfail(s0
0
),

� div(s0) = div(s0
0
).

If two programs,P andP 0 are CFFD equivalent, the in-
tuitive meaning is that both have the same set of possible
computation sequences and, furthermore,P can deadlock
after a sequence of actions if and only ifP 0 can also dead-
lock after the same sequence of actions. The computation
sequences that lead to a divergence (infinite sequence of in-
ternal actions) are also the same for the two processes.

In [12] it was proven that

CFFD is the weakest congruence relation for fi-
nite state systems, with respect to the composition
operators of process algebras, which preserves
the truth of nexttime-less linear temporal logic (or
LTL’ for short) [24].

In practice compositionality means that we can replace a
Lts with a CFFD equivalent Lts in the context of any of the
process algebraic operators. It should be noted that this is
not the case with all behavioral equivalences.

Because of compositionality, we can use the following
method in building a minimized2 Lts describing the beha-
vior of a given system. Assume that the correctness criteria
of a system are given inREQ which is a set of LTL’ for-
mulae. Let us consider that our system consists of several
concurrent entities. Naturally all the entities are modeled
as separate Lts’s,lts1; : : : ; ltsn. Let us assume thatjj is
a parallel operator that enforces synchronization on all the
common actions of the combined Lts’s, similarly as CSP
parallel operator [9]. A Lts describing the behavior of the
system is achieved by parallel composition of the separate
componentssys = lts1 jj : : : jj ltsn. After building the
Lts describing systems behavior, a model-checker is used
to test if the system respects the requirements given by the
LTL0 formulae in the setREQ.

A much more efficient and memory-saving way to
build the Lts of the system is, first to minimize the
separate system components with respect to CFFD-
equivalence, and after that combine the minimized compon-
entslts1

min; : : : ; ltsn
min to form the Lts describing the be-

havior of systemsysmin = lts1
min jj : : : jj ltsn

min. Be-
cause CFFD is a congruence relation, it is guaranteed that

2Sometimes finding the minimal equivalent Lts is computationally
hard, and we have to use some heuristics to find condensed, but not ne-
cessarily minimal Lts’s.

sys =CFFD sysmin. Furthermore, because CFFD minim-
ization preserves the truth of allLTL0 formulae, the cor-
rectness of the system can be detected by model-checking
the minimized system descriptionsysmin against the for-
mulae in the setREQ. More formally, the following is true
for all LTL’ formulae�: sys j= � iff sysmin j= �.

The fact that CFFD is theweakestLTL’ preserving con-
gruence relation guarantees that the minimized Lts is op-
timally small and still contains all the information needed
in verification.

The compositional method of building Lts’s is not re-
stricted to the use of CFFD and linear temporal logic only.
We can use other equivalence relations, as well, which are
strong enough to preserve all the interesting properties and
which are congruent at least with respect to the parallel op-
erator.

4. Compositional state space generation from
SDL descriptions

Externally visible actions of a system specified in SDL
are theinput andoutput statements it uses to communic-
ate with the environment. The rest of the actions within
the system, and its internal state (e.g. values of different
variables) are not interesting if only the external behavior is
concerned.

As stated in previous sections, labeled transition system
is a convenient mathematical structure to describe the ex-
ternal behavior of a SDL system. Lts describing the beha-
vior of a SDL system is easily obtained from the systems
behavior graph in the following way.

� For every node in the behavior graph there is a state in
the Lts.

� If there is a transition between two nodes in the beha-
vior graph, there should also be a transition between
the corresponding states in the Lts.

� If a transition in the behavior graph is caused by an
input or an output action, the corresponding transition
in the Lts should be labeled with the action name.

� Other transitions in the Lts should be labeled with� ,
thus they are invisible to the external observer.

� The state in Lts corresponding to the root node of the
behavior graph is the initial state.

If we would like to verify the external behavior of a sys-
tem specified in SDL, we can generate the corresponding
Lts and use a suitable minimization to make the model-
checking less memory and time consuming. Most trans-
itions in a Lts describing the external behavior of a system

are internal ones, thus it is evident that the minimized Lts is
much smaller than the original one.

The same analogy as above can be used to define the
external behavior of an arbitrary component (usually a pro-
cess) in a SDL specified system. Externally visible actions
of a component are theinput andoutput statements it uses
to communicate with the rest of the system and the envir-
onment. Thus, the external behavior of an arbitrary com-
ponent can also be described by means of a Lts. Note that a
channel in a SDL description can also be modeled as a Lts.
So, the asynchronous synchronization of SDL components
is achieved by modeling the SDL channels explicitly with
labeled transition systems, that in turn communicate syn-
chronously with the real system components.

We can now use the following procedure to build com-
positionally a minimized Lts describing the behavior of a
complete SDL specified system.

1. Produce the behavior graphs (bg1 : : : bgn) from the sep-
arate system components.

2. Translatebg1 : : : bgn to corresponding labeled transition
systemslts1 : : : ltsn.

3. Minimize the Lts’s with respect to a suitable equival-
ence relation.

4. Model the channels combining separate system com-
ponents as Lts’s. Note that a limited channel length
has to be assumed to keep the system finite stated.

5. Combine the minimized Lts’s and channels by using a
synchronous parallel operator, and minimize the result.

The resulting Lts actually describes more than merely
the external behavior: it also contains systems internal sig-
nalling. The Lts which describes only the external behavior
of the system is obtained from the Lts resulting from the
above procedure by transforming the internal signalling ac-
tions to internal actions. This transformation can be done by
using thehide-operator of the LOTOS process [3] algebra.
The operation just renames the corresponding labels with
� ’s. After hiding, the Lts is minimized again. The result-
ing Lts describes the external behavior of the original SDL
specified system. If CFFD equivalence is used in minim-
ization, all the properties of the original system which are
expressible with Linear temporal logic can be checked from
the generated Lts.

If the internal signalling of the system or parts of it are of
interest, hiding internal signals can be skipped (or done only
for those signals that are not needed). Thus, the composi-
tional verification method is not limited to external behavior
only.

5. The RLC-protocol

In this chapter we look at an application of the compos-
itional state space generation method to a link layer data
transfer protocol specified for the UMTS (Universal Mobile
Telecommunications System) system [16]. Let us first have
a short general review of the motivation and basic principles
of the UMTS system.

The explosive growth of users and applications in mobile
telecommunications increases the requirements for the ca-
pacity in future mobile systems. The need for higher trans-
mission speed is inevitable while using mobile telecommu-
nication more for data transfer than speech.

Increment in capacity and in transmission speed require
either more frequency band or more efficient usage of the
current one. Particularly in metropolitan areas bandwidth
is a scarce resource and the competition between the oper-
ators is severe. Thus new and more efficient radio access
techniques are in a key position in the development of fu-
ture mobile telecommunication systems.

WCDMA (Wideband Code-Division-Multiple-Access)is
a radio access technique used inUMTS (Universal Mo-
bile Telecommunications System). In traditional radio ac-
cess techniques, likeFDMA (Frequency-Division-Multiple-
Access)and TDMA (Time-Division-Multiple-Access), the
highest amount of users is determined by the amount of fre-
quencies or timeslots in use. In CDMA technique users are
separated by a user-specific code, which is used to code the
transferred data. All users are in all frequencies at the same
time. Thus, the system does not have any artificial limits
for the amount of users and the radio network capacity is
more efficiently used. There are two versions of the CDMA
technique:NCDMA (Narrowband CDMA)and WCDMA
(Wideband CDMA). In WCDMA the radio bandwidth used
is wider than in the second generation systems (such as
GSM) where narrowband techniques are used, which in-
creases the capacity of the network. However, WCDMA
does not achieve the performance level of existing fixed net-
works using wideband radio access techniques when meas-
ured in network capacity and transmission speed.

UMTS network architecture (see Figure 2) design fol-
lows the GSM principle of distributing the intelligence of
the system throughout the network [1]. UMTS network
consists ofUE (User Equipment), like a mobile phone,UT-
RAN (UMTS Terrestrial Radio Access Network)and CN
(Core Network). UTRAN manages the radio path control
and CN controls the call establishment and release. There
are two standardized and fully open interfaces in UMTS.
Uu is specified between the UE and UTRAN.Iu interface
connects UTRAN to CN.

UTRAN is divided into several subsystems, calledRNS
(Radio Network Subsystem). RNS is a logical entity con-
sisting of several Node Bs connected to oneRNC (Radio

Network Controller). Node B maintains the radio interface
and relays voice and data to and from UE. RNC is the most
essential network element in UTRAN. It controls the radio
access network and performs radio resource management.
Complexity of the CDMA technique is perhaps most vis-
ible in the functionality of RNC, which is much more com-
plicated compared to the corresponding network element in
GSM.

The protocol stacks in UTRAN network elements cover
L1, L2 and L3 according to the OSI reference model. In
Figure 3 we illustrate the protocols establishing the com-
munication between UE and RAN.RLC (Radio Link Con-
trol) protocol, the target of our case study, is a L2 data link
protocol defined for the Uu interface terminating in UE and
RNC. Together with the other L2 protocolMAC (Medium
Access Control), the protocol provides a reliable data trans-
fer service via unreliable air interface. MAC mainly handles
the access to thephysical layer while RLC manages the ac-
tual data transfer taking care of flow control, retransmission,
error correction etc. AlsoPDCP (Packet Data Convergence
Protocol)is considered to be part of the link layer. The pro-
tocol optimizes transmission in the radio interface by com-
pressing the data packets before sending.

The RLC protocol is located above the MAC protocol
(see Figure 4). MAC provides a symmetrical, unreliable
data transfer service over the radio interface. We model the
MAC service as a channel where data can be lost. On the
other hand we assume that data can not be corrupted or du-
plicated. The length of the channel is one and in case the
channel is full it is blocks the sender.

RLC provides to the upper layers several services related
to data transferring. According to the specification [2] the
protocol performs RLC connection establishment and re-
lease, transmits data in transparent, unacknowledged or ac-
knowledged mode, allows QoS (Quality of Service) setting
dynamically during the data transfer and notifies the upper
layer of the unrecoverable protocol errors. We are concen-
trating here on the verification of reliable data transfer ser-
vice in acknowledged mode. We also include RLC connec-

Iur

Iu

Core Network (CN)

3G-SGSN

RNCRNC

IubIub

UE

3G-MSC

Uu
Node BNode B Node B Node B

Radio Network
Subsystem (RNS)

Radio Network
Subsystem (RNS)

Radio Access Network (RAN)

Figure 2. UMTS architecture

Iub
transmission Iub

transmission

UE Node B RNC

L2

L1

RRC / IP+ApplicationRRC / IP+ApplicationL3

PDCPPDCP

RLC

MAC

RLC

MAC

WCDMA L1 WCDMA L1
WCDMA L1

Figure 3. UMTS protocol layers

RLC
Control

MAC and
L1 Control

RLC

MAC

L
3

L
2

L
1

BCCH PCCH CCCH
DCCH DTCH

RLC-URLC-C

BCH PCH FACH RACH DSCH DCH

PDCP

WCDMA L1

Figure 4. UMTS Link layer

tion establishment and notification of unrecoverable errors
into our model to make the functionality of it sound and
complete.

The RLC connection establishment procedure as a whole
consists of receiving one message from theupper layerRRC
(Radio Resource Control)protocol. The connection estab-
lishment message is received approximately at the same
time at both ends of the protocol, i.e., in UE and RNC.

The acknowledged data transfer service transmits upper
layer PDUs (Protocol Data Unit)and guarantees delivery
to the peer entity. In case RLC is unable to deliver the data
correctly, the user of RLC at the transmitting side is noti-
fied. The acknowledged data transfer mode has the follow-
ing characteristics [2]:

� Error-free delivery: The receiving RLC entity delivers
only error-freeSDUs(Service Data Unit, upper layer
PDUs) to the upper layer.

� Unique delivery: RLC delivers each SDU only once to
the receivingupper layer by using duplicate detection
function.

� In-sequence delivery: RLC provides support for in-
order delivery of SDUs, i.e., RLC delivers SDUs to
the receivingupper layer entity in the same order as the
transmitting upper layer entity submits them to RLC.

Data

Acknowledgement
Receiver Transmitter

RLC RLCChannel

UE RNC

Receiver
Data

Acknowledgement
Transmitter

Figure 5. Architecture of RLC SDL model

� Out-of-sequence delivery: Alternatively to the in-
sequence delivery, it is possible to allow that the re-
ceiving RLC entity delivers SDUs to the upper layer in
a different order than delivered to it on the transmitting
side.

� Ciphering: This service is not yet defined in the spe-
cification.

We verify the in-sequence delivery of the protocol. There
are several alternativeARQ (Automatic Repeat reQuest)
schemes to choose from. We employstop-and-wait, per-
haps the simplest one, for our verification model. Each data
packet has to be acknowledged before a new one is accep-
ted from the user, and in case RLC is unable to deliver the
data according to the requirements it notifies the transmit-
ting upper layer entity.

6. Results of verification

We constructed a SDL model describing the functional
behavior of RLC protocol with respect to the features and
requirements to be verified. This case study is partly related
to a project within Nokia where UTRAN protocols were
described with SDL. At Nokia, as almost everywhere within
the telecommunication industry, an increasing trend is to
use the SDL language as a protocol development language.

To make the size of the specification manageable we had
to make some abstractions both for the behavior and the data
in the protocol. We left out the routing processes, which
are fundamental in the implementation model but mostly
uninteresting and unnecessary overhead for our verification
model. We integrated the decoding and encoding processes
into the main RLC process, so the processes are not expli-
citly shown in the SDL description.

In the SDL description both of the peer RLC protocol
entities are divided into transmitting and receiving units,
which are executed parallel and independently of each
other. The transmitting unit is communicating with the re-
ceiving unit of the peer entity via the unreliable channel be-
low. The channel consists of two data channel and acknow-
ledgment channel pairs for both directions. The architecture
of RLC’s SDL model is illustrated in Figure 5.

For the case study we used Sun Enterprise 3500
equipped with 6 CPU’s 336Mhzeach and 2 GB of memory.
We first tried to construct the state space as a whole with
SDT Validator [14] tool, but after generating 4 million states
the tool ran out of memory. In other words exhaustive veri-
fication with the commercial tool was not possible.

Then we applied the compositional method of section 4
in building the behavioral model for the protocol. We pro-
ceeded as follows. In the first phase we produced the be-
havior graphs from each process in the SDL model of the
RLC protocol with the SDT Validator, and translated them
into corresponding Lts’s. The data transmitting component
on each side had 643 Lts states and the receiving component
89 states. We generated Lts’s corresponding to the channel
components with LOTOS to Lts generator of verification
tool ARA [18]. Each of these Lts’s has 6 states. So, in
our verification model the underlying MAC service is re-
placed entirely with labeled transition systems that simulate
the behavior of MAC service under the assumptions given
in section 5.

Now we can approximate that if we would have been
able to construct the whole state space with ”brute-force”
approach, i.e., without using the compositional method, the
size of it would have been something between 4 million (the
number of states generated with the SDT validator before it
ran out of memory) and1; 8 � 1025 states.

After minimizing the components with respect to the
CFFD equivalence we first combined the transmitting com-
ponent on the UE side and the channel component trans-
mitting data from UE to RNC. The corresponding receiving
site was constructed by combining the RNC receiving com-
ponent and the acknowledgment channel. Ineach of these
combinations we hid all the internal actions and minimized
the result. After combining these two and minimizing the
result we got a Lts with 1077 states. The only visible ac-
tions were the data transmission requests by the user and
the corresponding data indications to the user on the other
side. The protocol error indication message for the user was
also visible in the Lts. All the activities in state space gen-
eration, namely minimization and parallel composition of
Lts’s and hiding action labels, were done with verification
tool ARA.

The resulting Lts models the functionality of RLC data
transfer in the acknowledged mode with the restrictions and
assumptions concerning the channel and ARQ scheme we
described above. Because the functionality of RLC data
transfer is symmetric for both network elements and they
execute in parallel completely independently of each other,
the verification results for this model can be generalized to
hold in the bidirectional model, as well.

Once the model was generated, the verification task it-
self was to be carried out. The first property verified was
that the protocol is free from deadlocks. The use of CFFD

equivalence enabled us to use a particularly simple scheme
for checking deadlocks: We hid all the actions of the system
and minimized the result, and checked whether the minim-
ized Lts contains any deadlocks. Had there been a deadlock
in the original Lts there would also have been a deadlock in
the abstracted and minimized Lts.

With this scheme we actually found some deadlocks. In
order to analyze the reason for these, we had to do fur-
ther analysis without hiding all the actions. The deadlock
analysis revealed that our original SDL model needed some
modifications (eg. the addition of some timers). We worked
over the SDL model and repeated the deadlock checking.
After several iterations we generated the deadlock-free Lts
described above.

As we already mentioned in the previous section, the in-
sequence property of the protocol, i.e., that it delivers mes-
sages in correct order, was also verified. In the verification
of this property the theory ofdata independence[23] was
used. Data independence guarantees that if a transfer pro-
tocol does not use the user data its logic and does not alter
its contents, it is enough to consider just a small number of
different types of user data frames, even if the domain of
the frames is extremely large. It is actually enough to con-
sider just two types of user messages in verifying a safety
property like this one.

We constructed a user process, which tries to send a se-
quence of messages of the form0�1�. Thanks to the theory
of data independence, the property of in-sequence delivery
could then be verified by observing that the sequence which
was received at the other end was also of the same form
0�1�: The verification was done by constructing a monitor
process observing that the sequence of received messages
was indeed the required one.

The above property is clearly expressible with Lin-
ear temporal logic (if executability of an action would be
thought as an atomic proposition). In [12] it is also shown
that hiding unnecessary details from a model does not
change outcome of a LTL model checking.3 Now we can
come to the conclusion that because minimization of our
model was done with respect to the CFFD-equivalence, it
is guaranteed that our verification result also holds in the
original, unminimized system.

Verification of the property was carried out successfully,
in other words, besides being free of deadlocks, our pro-
tocol also provides the in-sequence message delivery. The
ARA tool was also used in verifying both the deadlock free-
ness and in-sequence delivery. Since the Lts representing
the behavior of the protocol, i.e. the production of com-
positional state space generation, was so small (only 1077
states), the model checking itself, which would have been
impossible for the full model, was extremely quick.

3Clearly the definition ofunnecessary depends on the formula that is to
be verified.

7. Conclusions

In the text we pointed out the inability of current com-
mercial SDL tools to cope with state explosion in exhaust-
ive model-checking. We revised a previously proposed [13]
method where the state explosion of verifying SDL descrip-
tions could be alleviated by exploiting the theories of beha-
vioral equivalences, which have been developed mainly in
context of process algebra. In the method labeled transition
system representations are generated from the components
of SDL description. The asynchronous communication of
SDL is simulated by representing channels explicitly with
labeled transition systems. The key step of the framework
is minimization of these Lts’s with respect to a suitable
equivalence relation. One such is the CFFD equivalence
which preserves the truth of nexttime-less linear temporal
logics (LTL’), thus the minimization with respect to CFFD
equivalence does not change the outcome of LTL’ model-
checking.

The contribution of the paper was the application of
this framework to a third generation mobile communica-
tion protocol RLC, which is currently under standardiza-
tion of 3GPP. The success of the verification task clearly
demonstrated that even if our tool support was in some
sense inadequate (the tool ARA [18] that we used dates
has been constructed in 1994), the compositional method
(which works naturally with a synchronous communica-
tion paradigm) also works well with industrial-sized SDL-
systems that are asynchronous by nature.

8. Acknowledgments

The authors gratefully acknowledge the financial support
from Nokia Foundation. The authors also wish to thank
Professor Antti Valmari for extremely helpful comments.

References

[1] 3GPP. General UMTS Architecture, 1999.
[2] 3GPP. RLC Protocol Specification, draft 1.2.1”, 1999.
[3] T. Bolognesi and E. Brinksma. Introduction to the ISO Spe-

cification Language LOTOS.Computer Networks and ISDN
Systems, 14:92–100, April 1987.

[4] E. Clarke and E. Emerson. Design and Synthetis of Syn-
chronization Skeletons Using Branching Time Temporal Lo-
gics. In Workshop on Logic on Programs, number 131 in
Lecture Notes in Computer Science. Springer-Verlag, 1981.

[5] E. Clarke, E. Emerson, and A. Sistla. Automatic Verifica-
tion of Finite State Concurrent System Using Temporal Lo-
gic Specifications. InACM Transactions on Programming
Languages and Systems, volume 8, pages 244–263, 1986.

[6] E. Clarke, D. Long, and K. MacMillan. Compositional
Model-Checking. InProceedings of the Fourth IEEE Sym-
posium on Logic in Computer Science, pages 353–362,
1989.

[7] G. Holtzman.Design and Validation of Computer Protocols.
Prentice-Hall, 1991.

[8] S. Graf and B. Steffen. Compositional Minimization of Fi-
nite State Processes. InProceedings of 2st Workshop on
Computer Aided Verification, number 3 in Series in Discrete
Mathematics and Theoretical Computer Science, pages 57–
73. AMS-ACM DIMACS, 1990.

[9] C. Hoare. Communicating Sequential Processes. Prentice
Hall, 1985.

[10] ITU-T. Recommendation Z.100 - CCITT Specification and
Description Language. ITU, 1993.

[11] ITU-T. Recommendation Z.100 Annex F.1 - CCITT Specific-
ation and Description Language. ITU, 1993.

[12] R. Kaivola and A. Valmari. The Weakest Compositional Se-
mantic Equivalence Preserving Nexttime-less Linear Tem-
poral Logic. InCONCUR 92, 3nd International Conference
on Concurrency Theory, number 527 in Lecture Notes in
Computer Science, pages 207–221, 1992.

[13] M. Luukkainen and A. Ahtiainen. Compositional Verifica-
tion of SDL descriptions. InSAM98, 1st Workshop of the
SDL Forum Society on SDL and MSC, 1998.

[14] Telelogic Malm AB. SDT 3.5 Users Guide, SDT 3.1 Refer-
ence Manual. Telelogic, 1999.

[15] W. Thomas. Automata on Infinita Objects. In J. van
Leeuwen, editor,Handbook of Theoretical Computer Sci-
ence, Volume B, Formal Models and Semantics, pages 133–
191. Elsevier, 1990.

[16] www.umts-forum.org, 1999.
[17] A. Valmari. Compositionality in State Space Verification

Methods. InApplication and Theory of Petri Nets 1996, 17th
International Conference, number 1091 in Lecture Notes in
Computer Science, pages 29–56. Springer-Verlag, 1996.

[18] A. Valmari and R. Savola. Verification of the Behaviour
of Reactive Software with CFFD-semantics and ARA tools.
In Proceedings of ESA International Symposium On-Board
Real Time Software. ESTEC, Nordwijk, The Netherlands,
1995.

[19] A. Valmari and M. Tienari. An Improved Failures Equival-
ence for Finite-State Systems with a Reduction Algorithm.
In Protocol Specification, Testing and Verification XI, pages
3–18. North-Holland, 1991.

[20] A. Valmari and M. Tienari. Compositional Failure-Based
Semantic Models for Basic LOTOS.Formal Aspects of
Computing, 7:440–468, 1995.

[21] R. van Glabbeek. The Linear Time Branching Time Spec-
trum II: The Semantics of Sequential Systems with Silent
Moves. InCONCUR 93, Fourth International Conference
on Concurrency Theory, number 715 in Lecture Notes in
Computer Science, pages 66–81. Springer-Verlag, 1993.

[22] Verilog. GEODE - Technical Presentation. Verilog, 1994.
[23] P. Wolper. Expressing Interesting Properties of Programs

in Propositional Temporal Logic. InProceedings of the 13th
ACM Symposium on Principles of Programming Languages,
pages 184–193, 1986.

[24] Z. Manna and A. Pnueli.The Temporal Logic of React-
ive and Concurrent Systems, Specification. Springer-Verlag,
1991.

