58

[INTEGRATED|

Wireless Microservers

With Bluetooth components getting smaller and cheaper, we might soon
integrate wireless microservers into all kinds of electronic devices. The
authors explore applying a general-purpose, pluggable microserver,

based on wireless application protocol and Bluetooth technology, for

remote control purposes.

Stephan Hartwig and
Jan-Peter Stromann
Nokia

Peter Resch

University of Dortmund

PERVASIVE computing

ince the early days of the Web, server-side
executable content has been an important
ingredient of server technology. It has
turned simple hypertext retrieval into real
applications. Not surprisingly, the idea of
remotely controlling devices through the Web'-2 has
always seemed near at hand. Because hypertext user
interfaces can run on any Web browser, Ul devel-
opment boils down to Web content creation. Fur-
thermore, thanks to the HTTP standard’s smart and
scalable nature, we can fit embedded servers into
simple 8-bit microcontrollers with only a few
Kbytes of RAM and ROM (see the “Embedding
Servers into Devices” sidebar).
Ever since we started integrat-
ing hypertext browsers into mobile
phones, people have proposed
using mobile phones as remote
controls. Now, with the provision
of short-range wireless connectiv-
ity—for example, through Blue-
tooth—mobile phones and other handhelds might
substantially change the way people interact with elec-
tronic devices. Here, we report on our effort to cre-
ate a low-power wireless microserver with a very
small form factor and connect it to mobile devices
using standard consumer technology.

Candidate applications and technologies
Consumer electronics have used wireless low-
cost remote controls for decades. Adding embed-

ded servers to devices will create a new range of
use cases beyond the limited capabilities of infrared
remotes:

e Browsers could then allow real interaction instead
of just sending one-way commands such as
infrared remotes.

¢ We could harmonize similar operations in terms
of a Web UL, even if the built-in Uls of the par-
ticular devices differ.* A good example is set-
ting a device’s clock, which is a common oper-
ation in many consumer devices but always
requires a unique—and often error-prone—
implementation.

o We could distribute the Ul among the device’s
built-in UI and the handheld’s UL# For example,
we could export parental control functions—such
as “edit play-time budget or game type”—of
game consoles to a mobile phone.

¢ A server with memory could personalize its Ul
and service by collecting and interpreting its own
usage patterns and those of adjacent servers.

e Devices that lack a Ul have a restricted Ul, or are
purposely hidden could export a Ul to a handheld.

e While the handheld is connected to the device,
the device could connect to the Internet, in case
the handheld supports cellular data calls.

Eventually, we could turn each compatible hand-

held into a general-purpose remote control.
In a joint project, Nokia and the University of

1536-1268/02/$17.00 © 2002 IEEE

T here are several ways to make things visible on the Web. In
the simplest case, a server hosts an item’s Web presence
without a physical connection to the item. A handheld device
reads links between the item and its Web presence, connects to
the respective URL, and retrieves information about the item. A
well-known example for this approach is the Cooltown Museum,’
where small infrared transceivers are located close to the pictures.
When coming close, the visitor’s PDAs receive Web links that point
to the information pages for the particular picture. Unfortunately,
interacting with the item itself is impossible.

Interaction with a device would be possible if the device had a
wireless control interface to its internal logic. For example, the
mobile terminal could download a device-specific user interface
application from the Web and use it to control the device through
a device-dependent protocol (see Figure A1). This approach might
become feasible when we can download Java applications into
mobile terminals with access to Bluetooth APIs (see http://jcp.
org/aboutjava/communityprocess/review/jsr082). Accessing the
device immediately and locally without an Internet connection
would be possible only if the device contained an embedded Web
server (see Figure A2). An execution environment, such as server-
side scripting, would be required to interact with the device’s
logic.

Short-range connectivity seems to be an obstacle, but it
empowers location-aware applications through the wireless link’s
limited reach. If a user wants to adjust a microserver-equipped
TV’s volume, he or she does not want to accidentally interact with
somebody else’s TV. Therefore, short-range wireless radio links,
preferably using unlicensed bands, are well suited for networking
things and people.

1. T. Kindberg et al., “People, Places, Things: Web Presence for the Real
World,” Proc. 3rd IEEE Workshop Mobile Computing Systems and Applica-
tions (WMCSA '00), IEEE CS Press, Los Alamitos, Calif., 2000, pp.
19-21.

ul
download
Control Control .
~— Bridge = Device
- —— logic
Status Status
Embedding device
1
Browse = Web server + Control Device
——=execution ——= logic
——— environment
ul Status
Embedding device
(2) Wireless link

Figure A. (1) Ul application (such as Java Midlet) is downloaded
and controls the device by a control protocol. The internal and
wireless link for the control protocol must be bridged. (2) The
device hosts the server comprising Ul and execution environment.

Dortmund created a low-power wireless
microserver. (We use the term microserver
to refer to small and cost-efficient embed-
ded Web server implementations that are
either integrated or plugged directly into
the device.) Because mobile phones have a
much higher population than PDAs and
will likely be the first truly ubiquitous com-
puting devices, we chose to connect the
microserver to a mobile phone.

Although there are many technologies
available for embedded middleware for
distributed computing and service discov-
ery, such as Java, Jini, and UPnP,” we
decided not to use such middleware com-
ponents. For our project, these technolo-
gies have two important drawbacks: they
are not widely applied today and their
implementation takes more processing
resources then we were willing to spend.

APRIL-JUNE 2002

For example, a small implementation of Jini
that doesn’t even use Java-RMI would
require approximately 100 Kbytes of ROM
and 50 Kbytes of RAM plus another 100
Kbytes of RAM and 70 Kbytes of ROM for
a lean Java virtual machine that includes
basic packages (see www.psinaptic.com).
We chose to use Bluetooth because it is
the only short-range radio technology cur-
rently deployed in mobile phones. Our
implementation fit into the free memory
of a commercial Bluetooth module, which
was about 40 Kbytes of ROM and 4
Kbytes of RAM. For the phone, we used
existing implementations of the browser
and Bluetooth software without adding a
new middleware component. For remote
method invocation, we based our solution
(discussed later) on the popular yet old-
fashioned common gateway interface.

WAP and Bluetooth

The wireless application protocol is an
industry-wide standard to connect mobile
phones to the Web (www.wapforum.org).
It is designed especially for the mobile
phone environment and its limited battery
power and memory, small display, and low
transmission rates. Similar to the Japanese
I-mode, WAP provides Web access for
mobile devices. Usually, browsers directly
request HTML content from a Web server
using HTTP. A typical WAP infrastructure
also needs HTTP (see Figure 1), but the
WAP protocol stack (see Figure 2) and the
WML (Wireless Markup Language) are
tailored for the limited transmission capac-
ity and resources of mobile devices. In
addition, unlike HTTP, WAP allows server
push operation, so the server can send a
WML page to a browser without a request.

PERVASIVE computing

59

iRloNm N vis|

Mobile IP-network,
network Web
Wireless application HTTP
protocol (WAP)
Request Request
WAP HTTP
gateway server
Response Response
Wireless Markup WAP to HTTP Access o
Language browser Encoding
(WML) Decoding LD

The WAP standard also specifies different
levels of security that enable data encryp-
tion and trusted communication—for
example, for electronic payments or bank-
ing applications.

Because future mobile phones will have
larger screens and more processing powet,
the next-generation WAP standard (WAP
2.0) will support the HTTP protocol and
XHTML as a markup language. Another
reason for this support is the general trend
toward all-Internet protocol (IP) infrastruc-
tures. Currently, most Web browsers avail-
able in Europe are based on WAP 1.1, which

we selected for our implementation. How-
ever, you could apply our concept to other
mobile Web technologies, such as I-mode
and WAP 2.0 without a substantial change
in complexity.

Bluetooth is an industry standard for
short-range, low-power, wireless commu-
nications and networking (www.blue-
tooth.com/dev/specifications.asp). It uses
radio transmission in the license-free band
of 2.4 GHz and can transmit voice and
data with bit rates up to 720 kbits/sec
within approximately 10 meters.

Bluetooth technology supports point-

BCU: Bus Coupling Unit

CDMA: Code Division Multiple Access
DUN: Dial-up networking

EIB: European Installation Bus

GPP: General purpose port

GPRS: General packet radio service
IP: Internet protocol

LAP: LAN access profile

PAN: Personal area networking

PEI: Physical external interface

Ul: User interface

WDP: Wireless datagram protocol
WAP: Wireless application protocol
WML: Wireless Markup Language
WSP: Wireless session protocol

API: Application programmers’ interface

UART: Universal asynchronous receiver transmitter

Wireless
application
protocol

Figure 1. A wireless application protocol
request and response model. A WAP
request is directed to a WAP gateway.
The gateway decodes the request and
transforms it into an HTTP request for an
ordinary Web server. The gateway then
encodes the Wireless Markup Language
page response from the HTTP server and
sends it as a WAP response back to the
requesting WAP device.

to-point and point-to-multipoint connec-
tions. We can actively connect a Bluetooth
device to seven devices simultaneously.
These devices build a so-called piconet,
and every piconet contains up to seven
slaves and is controlled by a master. Sev-
eral piconets can be linked together to
form a scatternet.

Bluetooth was not envisaged to just
replace cables with interconnecting mobile
phones, PCs, and peripheral devices such
as headsets or printers. It aims to let arbi-
trary electronic devices form ad hoc net-
works to jointly advertise and use each
other’s services. It specifies its own service
discovery protocol, and every Bluetooth
device usually implements its own service

Session layer (WSP)

Optional
Transaction layer

Optional
Security layer

Bearer adaptation layer (WDP)

Internet protocol

or
Bluetooth

Figure 2. A WAP-over-Bluetooth protocol stack. Either the LAN
access profile or the personal area networking profile is used for
Internet protocol adaptation.

60 PERVASIVE computing

http://computer.org/pervasive

Search for Searching for Pia's laptop I 12:05'
gL“"‘i’;ggm devices Joe's drinks | ie |
Searching Pia's headset I T-mobile
] I I
Select Back Cancel Stop Menu Names
Pia's laptop Connecting to Joe's
Joe's drinks ald
Pia's headset . 1999
Connecting = Beer $1.
] Apple Juice $0.99
Select Back Cancel Coke $1.49
(a) (b)

Connect to MP3
player?

Accept Reject

Wireless application
protocol browser

Connecting to — MP3—

MP3 player... > o e

] Show playlist
Cancel Edit playlist

Figure 3. Consecutive screenshots of a mobile phone (a) while a user actively connects to a vending machine and (b) when the

server initiates connection (the connection request—"“Connect to MP3 player?”—comes without user interaction).

discovery server and client.

The Bluetooth community has identi-
fied many application areas for Blue-
tooth. To assure application-level inter-
operability between devices of different
manufacturers, it is not sufficient to spec-
ify the Bluetooth technology; we also
need to agree on the technology’s use by
higher-level protocols and applications.
Bluetooth profiles address these aspects.

WAP over Bluetooth

The WAP protocol stack includes at the
lowest level the wireless datagram proto-
col (WDP). This layer implements the
bearer adaptation and is defined for a vari-
ety of bearers, such as GSM, Code Division
Multiple Access, and the general packet
radio service. The WDP doesn’t cover Blue-
tooth but it does cover IP. In fact, WDP is
identical to the well-known user datagram
protocol, in case IP is the bearer. So the chal-
lenge is to define an IP encapsulation pro-
tocol for Bluetooth, which has been done
in both the LAN access profile and the per-
sonal area networking (PAN) profile (see
Figure 2). The LAP makes Bluetooth
behave like a standard serial port that
legacy software and devices can use. Con-
sequently, the LAP uses the same mecha-
nisms as a terminal that accesses a network
over a serial connection, namely point-to-

APRIL-JUNE 2002

point protocol and IP. When using the PAN
profile, Bluetooth behaves like a direct LAN
connection: the Bluetooth Network Encap-
sulation Protocol makes Bluetooth behave
similar to Ethernet using the Bluetooth
device address as a hardware address.
The PAN profile implements a lighter
stack than the LAP. The LAP is already
approved in the Bluetooth 1.1 specification,
but future implementations might favor
PAN, because it doesn’t require serial port
emulation and point-to-point protocol.

WAP-over-Bluetooth user experience

At first glance, Bluetooth is just another
bearer for an existing service. After we
established the Bluetooth and WAP con-
nection between the client and server,
browser operation is the same. However,
there are some major differences in the
WAP user experience between cellular and
Bluetooth connections.

The first difference concerns location
awareness. Bluetooth’s limited range is not
necessarily a disadvantage. A WAP-over-
Bluetooth server knows that once a user
connects, he or she is close. Thus, it can
offer location-aware services, and servers
in different places can reuse the same
URLs.

A second difference is that bandwidth is
typically higher in Bluetooth than in cellu-

lar systems, allowing richer content and
better performance.

Finally, there are two scenarios for estab-
lishing a connection. In the first scenario,
the user (WAP client) initiates the connec-
tion (see Figure 3a). Upon user request, the
WARP client searches for all Bluetooth devices
in the user’s proximity, then creates a WAP
connection to the selected WAP service. The
user might select a function such as “search
for Bluetooth devices.” Subsequently, the
phone displays the Bluetooth devices found.
The user selects the desired WAP service and
the phone displays this server’s starting page.

In the second scenario, the WAP gate-
way initiates the connection (see Figure
3b). In this case, we assume the WAP
client is in “discoverable” mode—that is,
other Bluetooth devices can find it. Once
the user terminal comes into the gateway’s
proximity, the WAP gateway actively con-
nects and displays its starting page on the
user’s phone. It is either an implementa-
tion choice or a user option whether to
confirm the connection.

In both examples, we assume that neither
the client nor server require authentication.

Implementation options for
embedded WAP servers

If we leave out the WAP standard’s
optional features and merge the server with

PERVASIVE computing

61

62

Static
content

Server
scripts

WAP-over-Bluetooth server

Bluettoolh
Interfaces

WAP server

(@)

Static
content

Server
scripts

WAP-over-Bluetooth server

Device
logic

Bluettooth
WAP server

(b)

-
o
—_ k]
[@ —
- = [=]
S o = =
—R= o = o .
°s|_°_s8 Device
=t (<] f
'62 = -Et |Og|c
= e © c 2
—a = =
o = =—
] S s
< 7]

Figure 4. (a) An embedded WAP server versus (b) a pluggable server composed of a standard connector and a standard control interface.

Pluggable
server
Select

Memory

Ul selector

Device
identifier

Device Y

(a)

the gateway, we can implement an embed-
ded WAP-over-Bluetooth server in an 8-bit
microcontroller using a few Kbytes of
RAM and Flash, provided that Bluetooth
(including the stack) is running on a dedi-
cated component. Such optional features
mainly include the WAP security layer and
the transaction layer (see Figure 2). Blue-
tooth implements flow control, retrans-
mission of lost packets, authentication, and
encryption—thus replacing some of the
sacrificed WAP features.

Because the embedded server does not
require an internal separation between the
WAP gateway and HTTP server, we can
directly store the content in the final WAP-
encoded message format, thus making
WAP encoding and decoding obsolete. Fig-
ure 4a depicts a simple model of such an
embedded WAP server. Typically, the WAP
server would either run on the baseband
processor inside a Bluetooth module or on
a host processor connected to the Blue-

PERVASIVE computing

Pluggable
server
Store (Ul (y)]
Ul loader Memory
Device
WAP UI

(b)

tooth module. The interfaces include gen-
eral-purpose ports, a universal asynchro-
nous receiver transmitter (UART), and the
like. Logically, part of the WAP Ul would
be implemented as server-side scripts, trig-
gering actions on user interaction.

The concept of embedded WAP servers
is appealing at first glance. Any mobile
phone can act as a remote control for
Bluetooth devices, which simply export
their Uls in a standard hypertext lan-
guage. However, once these servers are
embedded in low-cost devices, they can
unduly increase the devices’ costs. The
server’s cost amounts to at least the cost
of the Bluetooth module, including exter-
nal circuitry. This can be 10 Euros and
more, and will remain so at least until
mid 2003. Customers using the embed-
ded server feature might be willing to pay
more, but many people might end up
paying for a feature they never use.
Moreover, Bluetooth technology and

Figure 5. (a) A preprogrammed Ul versus
(b) a Ul downloaded from the device.

hypertext UI development is clearly out-
side the core competence of many device
manufacturers.

Instead of embedding the server into the
device, we could provide a robust and
cheap standard connector where a plug-
gable server can be retrofitted (see Figure
4b).¢ Such a connector would, for exam-
ple, provide several general-purpose ports
and a UART option. Unlike embedded
servers, we could cost-efficiently manufac-
ture general-purpose pluggable servers in
large quantities. Moreover, if we could sep-
arate the Ul content from the correspond-
ing devices and pluggable servers, then
independent marketplaces for Uls, servers,
and devices could emerge. We could move
pluggable servers from one device to
another—for example, if a device is not
used for some time, we could remove the
server and plug it into some other device.
This concept could, for instance, be inter-
esting for toy construction kits (such as
Lego), which increasingly use digital tech-
nology to construct sophisticated machines,
vehicles, and robots. Because these kits con-
sist entirely of pluggable components, a
pluggable server would be a natural exten-
sion. Eventually, we’ll have to decide
whether to use an embedded or pluggable
server on a case-by-case basis. However, the
question remains, “How do we get the UI
into the server if we purchased the server
independent of the device?”

http://computer.org/pervasive

Distributing the Ul

We must either preload general-purpose,
pluggable servers when selecting a candi-
date Ul or externally load the UI when we
first plug it in. In addition, for built-in
servers, we’ll want to be able to remotely
update UI content. Here, we present four
methods for provisioning Uls.

We borrow our first method, which
applies to pluggable servers, from general-
purpose IR remote controls: Every server
can be preprogrammed for many devices.
Once the server is plugged into a device,
the device identifies itself to the server
(either on startup or on the device’s
request) and the server selects the corre-
sponding Ul from several available Uls (see
Figure 5a). This method is not very flexible
and adds undue cost to the server because
it reserves memory for Uls that a particu-
lar customer might never use.

More desirable are servers that down-
load the desired UI from some source. This
method assumes that the device simply
stores its Ul in memory (for example,
ROM) and uploads it to the server once it
is plugged in (see Figure 5b).¢ Compared to
the previous method, the total cost is
lower, because only the required Ul must
be stored in memory. However, it makes
the device slightly more expensive, and the
server—but not the Ul—is provided sepa-
rately from the device. Moreover, we can’t
easily update the UL

Obviously, the most flexible method is
to download the Ul over a network (see Fig-
ure 6). One simple implementation is to
connect the server to a PC that is connected
to the Internet. The PC downloads the Ul
file from the manufacturer’s Web site and
then stores it in the pluggable or built-in
server.

The fourth and most convenient method
assumes that the server creates a Bluetooth
dial-up network connection to the Ul server
through a Bluetooth phone. Advantageously,
this phone would be the same phone that is
used to access the server. This method con-
sists of several steps (see Figure 7):

1.The user plugs the server into the

device and creates a Bluetooth con-
nection to it.

APRIL-JUNE 2002

Submit UI

(Device Y)
Manufacturer 4»
server for example,~
Request Ul (aPC)p

Submit UI
Network (Device Y)

access point Pluggable

server

(Device Y)

Figure 6. Downloading a Ul over a network.

Manufacturer Internet Mobile Phone Pluggable Device
access point Server
Get device
Create identifier
Bluetooth
connection Device ID includes
(DUN) location information,
Create GSM such as a URL
connection
IP connection
Request Ul (device 1D)
Upload Ul
Store Ul
| I | + |

Figure 7. Downloading a Ul over a network (method 4).

2. The server retrieves the device ID and
manufacturer URL from the device.

3. The server discovers that the Ul is not
in memory. It creates a dial-up network
connection to an ISP and downloads
the Ul from the manufacturer or some
service provider. Alternatively, the
pluggable server directly dials up the
manufacturer. Dial-up networking
over Bluetooth is supported by the
dial-up networking profile.

4. After the server has downloaded the
U], it presents the Ul starting page to
the user.

Clearly, the UI does not have to be pre-
stored in the server, and no other devices
(such as a PC) are needed for the down-
load. This procedure could also be useful
for regularly updating the UI or down-
loading informative pages into the server
(perhaps to advertise the device’s new
model). Only when the server is plugged
into a device for the first time will the user

have to wait until the download completes.
However, the server could cache the Uls of
recently connected devices to avoid delays
when being moved from one device to
another. Typical WML pages occupy only
a few hundred bytes of memory.

A simple method invocation procedure
through CGl scripts

We cannot realize remote control appli-
cations without server-side scripting,
because user interaction must trigger I/O
operations on the server’s interface to the
device’s logic. The challenge is to achieve
some basic means for invoking device func-
tions without using distributed computing
middleware such as Jini or UPnP.

We implemented a general-purpose CGI
script, all.gi, as part of the server software.
We used the script to invoke methods on
the server’s interface. We called it with a
query string for selecting and parameter-
izing the desired operations. For example,
loading the following URL

PERVASIVE computing

63

64

[|

Flash 35-40 Kbyte
RAM 4-5 Kbyte

35x40mm

WSP Wireless session protocol

UDP/IP User datagram protocol/Internet protocol

PPP Point-to-point protocol

BNEP Bluetooth network encapsulation protocol

call.cgi ? Port1=1 & serial=myString &
resultURL=myURL.wmlc

would set Port1 to one, read a string from
the serial port, store the string into the
browser variable myString, and load URL
myURLwmlc. (The actual syntax of the imple-
mented script is different. This example just
explains the idea.) Besides reading and writ-
ing to the interfaces, the implemented script
can also increase and decrease counters and
read and write string tokens (like cookies)
to the server’s flash memory. This approach
is rather primitive, but it works fine for

WAP Server
WSP File
Connec- system
UDP/IP UDP/IP tion
manager cal
PPP BNEP —— Scripts
Bluetooth Hardware abstraction
protocols layer
0S GPP UART Flash
(b)

0S Operating system
GPP Generate purpose ports

UART Universal asynchronous
receiver transmitter

many applications without requiring cus-
tom server scripts. We implemented the
script in native code as part of the server
and did not require any script engine for
execution. The ROM usage was 3 Kbytes.

WAP-over-Bluetooth
demonstrator implementations
We developed two working implementa-
tions of the WAP-over-Bluetooth server—a
PC reference implementation using a Blue-
tooth PC card and an embedded imple-
mentation. Figure 8 shows the server hard-
ware (the dimensions are 32 X 40 mm), with

(a)

PERVASIVE computing

(b)

Figure 8. (a) Microserver prototype
implementation and (b) the most
important blocks of the software
architecture.

the server implemented inside a Bluetooth
module. The server’s total footprint is about
4 or 5 Kbytes of RAM and 35 or 40 Kbytes
of ROM, depending on the profile used
(LAP or PAN). This includes a connection-
less WAP stack without WAP security. The
connector implements two UARTS, several
I/O ports, and a power supply. We can
update the server’s content and software
through a PC application but not yet over
server-initiated dial-up networking. We also
modified a commercial Bluetooth phone’s
software to support WAP-over-Bluetooth.

The first ideas many people had were
about remote-controlled PC applications,
even though these are not embedded appli-
cations. We implemented a WAP applica-
tion to control PowerPoint presentations
using a Bluetooth phone. Another interest-
ing demo application we did was to jointly
edit an MP3 player’s play list (running on a
Bluetooth-equipped laptop) for clubs and
private parties. Interestingly, these kinds of
demos were rather easy to implement once
the server platform was available. Two stu-
dents were able to do both the PowerPoint
and MP3 demos in just a few days. How-
ever, the implementations that used the
embedded microserver hardware were the
most interesting.

The toy crane demonstrator

The toy crane demonstrator is a typical
candidate for a pluggable server. We bought
a toy crane and removed the cable remote to
connect the motors to relays. We then con-
nected these relays to a microserver’s gen-
eral-purpose ports, including the corre-

Figure 9. The toy crane demonstrator.
The server is located in the driver’s cab
and connected through relays to the
crane’s motors. The (a) current WAP
menu displayed is used to (b) lift and
lower the crane’s boom.

http://computer.org/pervasive

. Window .
Heating blind Light
PEI PEI PEI
| | |
— — — Installation
| | bus
| | |
BCU BCU BCU
| | |
PEI PEI PEI
Temperature Control Di
sensor pad ey
(a) (b)

sponding UL We purposely selected the toy
crane to see whether a WAP UI could suffi-
ciently replace the powerful joystick
operation.

We showed the crane at trade shows and
to the Bluetooth congress. Users familiar
with WAP browsers could operate the crane
intuitively without major instructions. We
displayed the links as small icons repre-
senting individual control options. The
phone Ul didn’t allow any proportional
control (similar to a joystick), but we imple-
mented the WAP content (see Figure 9) such
that users could repeatedly start and stop a
selected movement (for example, “lower
the boom”) by pressing the same button.
The delay between key presses and motor
activation was negligible.

APRIL-JUNE 2002

Home automation

For the next demonstrator, we con-
nected a bluetooth server to a home bus.
The goal was to operate and control
devices on the home bus via Bluetooth
phones. We implemented a working ver-
sion of the demo using the PC reference
implementation.

The most widely deployed installation
bus for home automation in Europe is the
European Installation Bus (see www.eiba.
org). An installation bus system aims to
decouple network control and AC power
distribution. This is achieved by providing
two logically independent networks: first,
the 110/220V power distribution network,
and second, a low-voltage network for
control purposes. Alternatively, the con-

E
s g 2
(=] = (] o .
2—=3 = g ——= Bus Coupling Unit
= = Server SE¢c8
ea = - = =8
scripts s S
@ FE
WAP-over-Bluetooth server ="
(=]
'@
=
£ Europegn
Installation
Bus

Figure 10. (a) The installation bus
provides a network between devices and
controls; (b) all devices and controls are
connected via a Bus Coupling Unit (BCU).

trol information could be transmitted
through the power distribution network
using modulation techniques, which saves
extra wiring (a “powerline EIB”). The
advantage of separating power distribu-
tion and control is that the connection
between control points (switches, dimmers,
and control pads) and devices is not hard-
wired but can be configured. Similar to a
computer network, datagrams are sent
between control points and devices to trig-
ger the desired actions in the devices—like
switching a light on and off.

Every control point (switch, button, con-
trol pad, and so forth) can be set up to con-
trol every device or clusters of devices (see
Figure 10a). In the simplest case, a light
switch is configured to switch a particular
lamp on or off. A PC or a dedicated EIB
device connected to the installation bus con-
figures the network.

EIB control points usually consist of
two components. The main part, nor-
mally not visible to the user, is the Bus
Coupling Unit (see Figure 10b). The sec-
ond part, the application module, con-
tains the UI and the control logic. This
could be a simple light switch but also a
heating regulator. The application unit is
plugged directly into the BCU’s physical
external interface (PEI) and thus hides the
BCU in the wall.

EIB bus systems are widely deployed,
mainly in office buildings and hospitals but
also in houses. Although these systems pro-
vide some convenience, they still suffer
from the fact that the UI to the home net-
work is largely unchanged compared to
plain old installations: switches, dimmers,
and so forth.

Here the idea of the pluggable server

Figure 11. Controlling the home
network via a plugged-in WAP-over-
Bluetooth server.

PERVASIVE computing

65

66

comes into play: Every BCU can send con-
trol datagrams to any device connected to
the installation bus. Logically, we could go
into an EIB networked building, unplug an
arbitrary application module, and plug a
WAP-over-Bluetooth microserver into the
BCU using the PEI interface (see Figure 11).
Once the microserver is loaded with the
correct content, a user can control any
device connected to the installation bus
through his or her Bluetooth phone’s WAP
browser. For our demonstrator, we con-
nected a Bluetooth-equipped laptop to the
BCU. In Cooltown terms, this could be
called a placeManager,’ because it provides
a Web presence for the devices and orga-
nizes them in its Web presentation.

To ease content creation, we created a
software tool that automatically converts
the network configuration data into server
content. The configuration data is avail-
able as a binary file, which is created by the
commercial EIB software tool used to con-
figure the installation bus.

The most interesting lesson learned from
this demonstrator is that, in some areas,
deploying pervasive computing applica-
tions does not suffer from the famous hen-
and-egg problem. These installation

PERVASIVE computing

Stephan Hartwig is a project manager for Nokia Mobile Phones and is currently
involved in Bluetooth software development for mobile phones. He has been working
as SW designer and project manager in projects related to digital TV systems, mobile
multimedia, and bluetooth solutions. Other research interests include adaptive filters,
image sequence compression, and formats conversion. He received his diploma degree
in electrical engineering from the University of Bochum and a PhD from the University
of Dortmund, Germany. He is member of the VDE, ITG, and IEEE.Contact him at Nokia
GmbH, Rensingstr. 15, 44807 Bochum, Germany; stephan.hartwig@nokia.com.

Jan-Peter Stromann is a system design engineer at the Product Creation Center of
Nokia Mobile Phones. His development interests include system integration of mes-
saging components such as WAP and MMS. He studied electrical engineering at the
University of Dortmund. His diploma thesis dealt with embedded WAP servers as
gateway systems for installation bus systems. Contact him at Nokia GmbH, Rens-
ingstr. 15, 44807 Bochum, Germany; jan.stroemann@nokia.com.

Peter Resch works as an electrical engineer at the Computer Engineering Institute,
University of Dortmund. His research interests include microprocessor design and
the design of mobile and ubiquitous devices and their applications. He helped to
create a new ubiquitous computing research group at the institute. He received his
graduate engineer at the Dortmund University of Applied Sciences. Contact him at
University of Dortmund, Computer Engineering Institute; peter.resch@udo.edu;
www-ds.e-technik.uni-dortmund.de.

busses, for example, are deployed today
and a small additional investment for the
pluggable server turns such a building into
an attentive environment. Typical installa-
tion busses also contain sensors such as
light meters and thermometers that might
provide useful context information. It
would be interesting to study how to make
the WAP Ul context aware, also taking into
account personal usage patterns.

uture implementations of both

mobile and embedded servers will

be more powerful and thus will

use true distributed computing
middleware. However, for now, we have
shown that connecting electronic devices to
the Web with inexpensive standard tech-
nology is possible and is sufficient for many
applications. A major challenge will be to
identify application areas where we can
deploy pervasive computing technology in
consumer domains without major invest-
ments in infrastructure. One possibility is
to determine where we can add value to
legacy systems by adding embedded server
technology, like we did with the EIB imple-
mentation. Finally, we have to give device

manufacturers a cost efficient option for
making their products ready for integration
into a pervasive computing environment
without committing to a particular perva-
sive computing technology or middleware.
A simple—yet to be standardized—control
interface is such an option. H

We thank the Nokia thin server team members
who contributed to these demonstrations,
especially Eugen Palnau, Stefan Kapsokefalos, Ossi
Rabina, Ari-Pekka Peltola, and Jari Kokkonen. We
also thank Uwe Schwiegelshohn at the University
of Dortmund for his support. The work on the EIB
system would have been impossible without the
cooperation and support of Christian Heite and
Martin Gréafe of ABB Busch Jager, who provided
expertise on EIB systems. The authors alone are
responsible for the contents of this article. In addi-
tion, the article presents research activities and
does not make any statement about the commer-
cial availability of such technology by any vendors.

1. US Patent 5,956,487, “Embedding Web
Access Mechanisms in an Appliance for User
Interface Functions Including a Web Server
and Web Browser,”1996, document US
5956487; www.depatisnet.de.

2.S. Hartwig et al., “WAP over Bluetooth:
Technology and Applications,” IEEE Int’l
Conf. Consumer Electronics, IEEE Press,
Piscataway, N.J., 2001.

3. J. Bentham, TCP/IP Lean, CMP Books, 2000.

4. B.A. Myers, “Using Hand-Held Devices and
PCs Together,” Comm. ACM, vol. 44, no.
11, Nov. 2001, pp. 34-41.

5.]. Burkhardt et al., Pervasive Computing,
Addison Wesley, Reading, Mass., 2002.

6. Patent Application WO 01/41408 01 A1, “A
Device and a Method for Operating an Elec-
tronic Utility Device from a Portable
Telecommunication Apparatus,” document
W0200141408; www.depatisnet.de.

7. T. Kindberg et al., “People, Places, Things:
Web Presence for the Real World,” Proc. 3rd
IEEE Workshop Mobile Computing Systems
and Applications (WMCSA'00), IEEE CS
Press, Los Alamitos, Calif., 2000, pp. 19-21.

For more information on this or any other
computing topic, please visit our digital library
at http://computer.org/publications/dlib.

http://computer.org/pervasive

