
660 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 12, NO. 8, AUGUST 2002

Overview of Research Efforts on Media ISA
Extensions and Their Usage in Video Coding

Ville Lappalainen, Timo D. Hämäläinen, and Petri Liuha

Abstract—This paper summarizes the results of over 25
research groups or individual researchers that have presented
video coding implementations on general-purpose processors
with the new single instruction multiple data media instruction
set architecture extensions. The extensions are briefly introduced
and the fundamentals for extensions, as well as some inherent
problems, are explained. The reported attempts to utilize the
extensions are divided into kernel- and application-level, as well
as platform dependent and independent optimizations. Optimized
applications include, in addition to some proprietary methods,
all of the major video coding standards such as H.261, H.263,
MPEG-4, MPEG-1, and MPEG-2. These optimized implemen-
tations include a complete video codec, several decoders, and
several encoders. Additionally, a performance comparison is given
for four representative encoder implementations based on the
reported results. Also included is an overview of future trends for
new instructions and architectural speed-up techniques.

Index Terms—H.263, MPEG-4, multimedia instructions, single
instruction multiple data (SIMD) media instruction set architec-
ture (ISA) extensions, video coding.

I. INTRODUCTION

DESPITE the huge increase in performance of general- pur-
pose processors for PCs and workstations, the new ap-

plications, such as real-time video encoding or decoding, have
been requiring special architectural enhancements. Tradition-
ally, processors have been optimized for executing complex pro-
gram code structures without much prior knowledge of the ap-
plication demands from the execution point of view. However,
video and other media processing applications have basically
more predictable execution behavior and require regular, mas-
sively repetitive operations, both of which could be utilized in
architectural optimizations.

Single instruction multiple data (SIMD) multimediaor media
instruction set architecture (ISA) extensionsconsist of new in-
structions and resources added to processors to improve the per-
formance of media processing. The extensions usually aim at
exploiting the existing structure and resources of the processors
as much as possible. Two thorough surveys on this topic are pre-
sented by Lee [52] and Ferretti [25].

HP’s PA-RISC was the first ISA to introduce its SIMD media
ISA extensions, called Multimedia Acceleration eXtensions
(MAX-1) [48]. Other SIMD media ISA extensions include

Manuscript received May 28, 2001, revised February 18, 2002.
V. Lappalainen and P. Liuha are with Nokia Research Center,

FIN-33721 Tampere, Finland (e-mail: ville.lappalainen@nokia.com;
petri.liuha@nokia.com).

T. D. Hämäläinen is with Tampere University of Technology, Institute
of Digital and Computer Systems, FIN-33101 Tampere, Finland (e-mail:
timo.d.hamalainen@tut.fi).

Publisher Item Identifier 10.1109/TCSVT.2002.800865.

Sun’s Visual Instruction Set (VIS) [40], [77], HP’s MAX-2
[50], [51], Intel’s Matrix Math eXtensions (MMX) [67], Mips
Digital Media eXtensions (MDMX) for MIPS processors [60],
Alpha’s Motion Video Instructions (MVI) [11], Motorola’s
Altivec [20], Intel’s Streaming SIMD Extensions (SSE) [75],
AMD’s 3DNow! [65], MIPS-3D Application Specific Exten-
sions (ASE) [76], and Intel’s SSE2 [28].

The main emphasis of this paper is to review video encoding
and decoding implementations that make use of these exten-
sions. In the following, we first summarize how the extensions
speed-up media processing. Next, the review of implementa-
tions is presented. It is organized as follows.

The first group of implementations makes only use of the new
instructions without any major algorithmic, i.e., platform-inde-
pendent optimizations. For this group, we first review perfor-
mance evaluations of the SIMD media ISA extensions withdis-
tinct kernelsand after those we review implementations with
complete applications.

The second group of implementations includes both platform-
independent and the use of SIMD media ISA extensions. Again,
bothkernel-level and application-level research resultsare given.

We also present performance comparisons for four most com-
parable implementationsandgiveanoverviewof thefuturetrends
forarchitectural speed-upmethodsand furtherdevelopednew in-
structions.

II. SIMD M EDIA ISA EXTENSIONS

Video coding algorithms most often process byte-wide data,
for which a wide arithmetic unit such as a 64-bit one inside
the processor is an overkill. This is the main motivation behind
subword parallelism, in which a standard unit of computation
or storage, a word, is partitioned into smaller units called sub-
words. The same operation can be performed on each of the sub-
words in parallel. Subwords can be of different sizes, the most
commonly used sizes being 8 or 16 bits for media processing.

Theoretically, subwords can be either overlapping or
nonoverlapping, either partially or completely fill the word,
either implemented by software or hardware and deal with
either integer or floating-point data [52]. In practice, nonover-
lapping subwords that completely fill the word are used. More
importantly, they are implemented by hardware. This subset of
subword parallelism is also referred to as packed parallelism.
In MMX, MAX, VIS, and MDMX, for example, the subwords
are integer subwords, while in SSE, 3DNow!, MIPS-3D ASE,
and Altivec, the subwords are floating-point subwords.

Subword parallelism provides a very low-cost form of
small-scale SIMD parallelism in a word-oriented processor.

1051-8215/02$17.00 © 2002 IEEE

LAPPALAINEN et al.: OVERVIEW OF RESEARCH EFFORTS ON MEDIA ISA EXTENSIONS 661

A word-wide integer functional unit can be partitioned into
parallel subword units, with small hardware overhead.

For example, a 64-bit integer two’s-complement adder may
be partitioned into four 16-bit subword integer adders. Such
a partitionable adder allows four 16-bit additions, or a single
64-bit addition, to be performed in a single cycle. The overhead
cost is very small, since the same datapaths are used in either
case: two 64-bit register reads and one register write. A super-
scalar processor with two 64-bit partitionable Arithmetic Logic
Unit (ALUs) could support eight parallel 16-bit operations with
just a 6-ported register file, while a SIMD processor with eight
independent 16-bit functional units needs a 24-ported register
file. A 6-ported register file is enough, because two 64-bit writes
and four 64-bit reads are needed [52].

There are two main problems in subword parallel computa-
tion. First, there will be performance overhead resulting from
the need to provide precise subword data alignment. In general,
the programmer is responsible for data alignment; thus, pro-
gramming complexity increases [41]. Secondly, conventional
implementations of subword parallel computation require deep
software loop unrolling, which results in code size overhead.
This code size expansion may not be a serious problem with
general-purpose processors, but may have significant impact on
the cost of an embedded system.

A. Approaches to Data Alignment

The approaches to data alignment fall roughly into three cat-
egories, as summarized in [26]. One simple solution to achieve
alignment between two data sets (e.g., filter coefficients and
input data) relies on maintaining several replicas of one data set
(e.g., filter coefficients). Each replica has a different alignment
offset relative to the other data set.

For example, in a processor with two-way subword parallel
operations, one would need two copies of the filter coefficients:
one with the even data elements in the even positions of the word
and the other with the odd elements in the even positions of
the word. This way, depending on which output is computed,
one filter copy is selected and applied to the input data. This
approach can be used with MMX technology [34], for example.

The second approach relies on memory system support for
misaligned accesses. Some systems provide proper alignment
in hardware, for example Intel’s x86 memory systems [68]. The
disadvantage of these memory systems is that a single mis-
aligned access is significantly slower than an aligned access,
hence reducing performance as computation becomes memory
bound. Also, a typical memory system that supports misaligned
accesses is able to supply data with high throughput as long as
the data is aligned to the native word size, but its performance
degrades when data is misaligned. As a result, this solution is
both performance suboptimal and expensive, requiring a large
hardware investment.

A third approach relies on a shifter or other specialized re-
ordering unit for constructing the misaligned components of
the algorithm and issue only aligned memory accesses. This re-
ordering unit is explicitly controlled by the programmer. This
technique is used with Altivec [20] and VIS [77] technologies,
for example. Some of the shortcomings of this technique are that
since the construction of a misaligned data elements requires

the intervention of a unit other than the one where useful com-
putation takes place, it requires larger code for the instructions
of the ordering unit, extra fetch bandwidth and extra execution
time. In addition, this technique requires that the additional re-
ordering instructions are explicitly issued in an aggressively un-
rolled loop. This further increases the code size.

III. V IDEO CODING WITH SIMD MEDIA ISA EXTENSIONS

Performance evaluations of a complete set of architectural
features in IBM PowerPC620, Pentium Pro, and Alpha 21 164
are presented in [6], [21] and [18], respectively. However, the
processors analyzed in these studies do not contain any SIMD
media ISA extensions.

The papers (mentioned in Section I) that introduce specific
SIMD media ISA extensions usually focus on detailed descrip-
tions of the additional instructions and examples of their use.
The performance characterization in these papers is usually lim-
ited to a few sample code segments and possibly a brief mention
of the benefits anticipated on larger applications.

As already mentioned, subword parallelism computations are
also possible without any hardware support. Eckart mentions a
software-only technique to utilize subword parallelism in the
process of describing an MPEG-1 decoder optimized for Intel
Pentium [22]. A more general approach is studied thoroughly
by Zucker [86].

There are lots of studies, which evaluate the performance of
specificSIMDmediaISAextensions,whenexecutingeithercom-
pletevideocodingapplicationsorbarekernels.Thesestudiesusu-
ally describe, in a varying level of detail, how the implementation
of the specific algorithm utilizes the SIMD media ISA extensions
of interest. In this paper, the emphasis is on the complete applica-
tions, for which more detailed results are presented.

A. Platform-Dependent Optimization of Kernels

In this section, the studies are grouped according to the SIMD
media ISAs used. Kim and Choe report the performance of
SIMD floating-point extensions (3DNow!) and several DSP ker-
nels, including an finite-impulse response (FIR) filter. They re-
port individual speed-ups ranging from 1.3 to 1.5 for an FIR
filter with tap sizes of 1–10 on a 300-MHz AMD-K6-2 pro-
cessor [39].

Nguyen and John present an evaluation of Altivec and seven
multimedia kernels, including 8 8 IDCT and FIR. They per-
form trace-driven simulation using a cycle-accurate simulator.
They report individual (i.e., not average) speed-ups of 11.7 and
2.4 for IDCT and FIR on the Apple Altivec Emulator, respec-
tively [64].

Lee and McMahan present a very detailed implementation
and optimization of four typical multimedia kernels (of which
two are related to video coding) using MAX-2 extensions. They
report individual speed-ups of 2.7 and 4.1 for 1616 sum of
absolute differences (SAD) computation and 88 IDCT on an
HP PA-8000 processor, respectively [53].

Talla et al. study three MMX-optimized applications (no
video applications included) and kernels, including FIR. They
also evaluate the tradeoffs in superscalar performance with a
combination of measurements on Pentium II and simulation

662 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 12, NO. 8, AUGUST 2002

experiments. They report an individual speed-up of 1.8 for an
MMX-optimized FIR filter on Pentium II [74].

Bhargavaet al. study four MMX-enhanced applications (no
video applications included) and four kernels, including FIR.
They report an individual speed-up of 1.6 for FIR on Pentium II
[7].

Rice presents a detailed performance evaluation of VIS and
eight image processing kernels on an actual UltraSPARC-based
system. However, no results for video coding kernels are pre-
sented [71].

Another evaluation of Sun’s VIS and three kernels, including
an FIR filter, is presented by Chenet al. They use a simulated
approach. They report individual speed-ups of 6.3 and 3.4 for
a VIS-optimized FIR filter over a floating-point and fixed-point
implementation in the Ptolemy simulation environment, respec-
tively [14].

B. Platform-Dependent Optimization of Complete
Applications

In the following, the termframe rateis used to denote ei-
ther theframe decoding speedof a decoder or theframe en-
coding speedof an encoder. The implementations are grouped
according to the video coding method or standard used.

Mou et al. report individual frame rates of 60–243 fps
(frames per second) for a VIS-optimized H.261 decoder using
CIF (Common Intermediate Format, 352288) sequences
on a 167-MHz Sun Ultra 1 processor. It should be noted that
color conversion and display operations are included in these
performance figures [62].

Lee et al. report individual frame rates of 67 and 33 fps
for MAX-optimized H.261 and MPEG-1 video decoders on
a 80-MHz HP PA-RISC workstation [8], [49]. The MPEG-1
decoder used a resolution of 320240 [48].

Hsu and Liu report average frame rates of 23 and 65 fps for
an MMX-enhanced H.263 video encoder using QCIF (Quarter
Common Intermediate Format, 176144) sequences on a
200-MHz Pentium MMX and a 400-MHz Pentium II, respec-
tively. They have applied speed optimizations at a significant
expense of compression performance. With similar quality, the
output bit rate increases 1.2–1.5 times over the reference [31].

Lappalainen reports an average frame rate of 15 fps for an
MMX-enhanced H.263 video encoder using QCIF sequences
on a 133-MHz Pentium MMX. Bit rates ranging from 8 to 48
kbps were used [42].

Ikekawaet al. report individual frame rates of 115 and 25
fps for MMX-optimized MPEG-1 and MPEG-2 (Main Profile,
Main Level) decoders on a 200-MHz Pentium MMX processor
[33].

Defee and Huttunen report individual frame rates of 15.6–25
fps for a VIS-enhanced MPEG-2 Transport Stream decoder on
a 360-MHz Sun UltraSPARC. Bit rates ranging from 4 to 15
Mbps were used [19], [32].

Lappalainen reports an average frame rate of 15 fps (QCIF)
for an MMX- and SSE-enhanced proprietary video encoder
called MVC on a 733-MHz Pentium III processor. Bit rates
ranging from 8 to 24 kbps were used [43].

All the studies mentioned so far have focused more or less
on a single, specific architecture. Ranganathanet al. study the

TABLE I
PERFORMANCE OFVIDEO CODING APPLICATIONS ONSEVERAL PLATFORMS

WITH SIMD MEDIA ISA EXTENSIONS

performance of several video coding and image processing ap-
plications on avarietyof experimental architectural configura-
tions commonly used in general-purpose processors. They use
a detailedsimulatedapproach based on VIS extensions. They
report speed-ups for an MPEG-2 (Main Profile, Main Level)
decoder and encoder on an experimental processor that has an
issue width of 4 and supports out-of-order execution. A bit rate
of 5 Mbps and an image size of 352240 were used [69].

Table I summarizes the above-mentioned results. As can
be seen, the most commonly used platform is Intel Pentium.
Furthermore, all implementations exceed the real-time per-
formance limit of 10 fps and most decoders also exceed the
frame rates used in digital TV. However, only QCIF-sized,
low-bit-rate video encoders exceed the real-time limit. It should
be noted that some of the implementations here also represent
the first attempts to use SIMD media ISA extensions and the
clock frequencies of the processors were not very high during
that time.

We can try to omit the clock frequencies and other architec-
tural differences by considering the speed-ups when comparing
the results. Table II lists the speed-ups reported with the im-
plementations. Included is also information about the type of
a reference implementation, to which the results are compared.
It should be noted that the speed-up figures depend heavily on
the reference version and its optimization level. Thus, in gen-
eral it is difficult to compare the speed-up figures reported by
different researchers. Section IV clarifies and exemplifies this
issue in more detail.

Talla and John present a performance characterization of Pen-
tium II and several multimedia applications, some of which uti-
lize SIMD media ISA extensions, for example a commercial
(RealVideo) streaming video decoder. However, no frame rate
or speed-up figures are reported [73].

Zhouet al. describe a complexity analysis for MPEG-1 and
MPEG-2 video decoding with VIS. They do not provide any ex-

LAPPALAINEN et al.: OVERVIEW OF RESEARCH EFFORTS ON MEDIA ISA EXTENSIONS 663

TABLE II
SPEED-UPS ONVIDEO CODING APPLICATIONS OBTAINED WITH

PLATFORM-DEPENDENTOPTIMIZATIONS

perimental results, but derive a quantitative performance bound
for software MPEG decoders [85].

C. Platform-Independent Optimization of Kernels

In all the studies in the two previous sections, the main em-
phasis has been on the platform-dependent optimizations, espe-
cially on the utilization SIMD media ISA extensions. There are
also studies which take a more video-coding-oriented approach.
They propose some important algorithmic, i.e., platform-inde-
pendent optimizations. However, further improvements are real-
ized, when implementing the optimized algorithms with SIMD
media ISA extensions. It should be noted that only the studies
that utilize both platform-independent optimizations and SIMD
media ISA extensions are covered in the following.

Murataet al.propose an adaptive control method and MMX
implementation for IDCT and report real-time MPEG-2 video
and Dolby AC-3 audio decoding at 4 Mbps on a 266-MHz Pen-
tium II [63]. They also report speed-ups ranging from 1.11 to
1.32 at bit rates ranging from 4 to 10 Mbps over the LLM IDCT
[58] algorithm.

Winger further improves Murata’s method and describes an
MMX-optimized IDCT algorithm. Speed-ups ranging from
1.22 to 1.54 for IDCT at 4, 5, and 15 Mbps over Murata’s
method are reported [81].

Ishii et al. propose a parallel method and MMX imple-
mentation for variable length decoding (VLD) and inverse
quantization (IQ) for MPEG-2 decoders. They also report
speed-ups ranging from 1.37 to 1.48 for VLD and IQ compared
to a conventional method on a 200-MHz Pentium MMX. Bit
rates ranging from 4 to 10 Mbps were used [35].

Table III summarizes the above-mentioned kernel results.

D. Platform-Independent Optimization of Complete
Applications

Akramullahet al.describe several algorithmic optimizations,
which are designed especially for MMX and VIS technologies.
They also describe carefully how compiler and code optimiza-
tions are applied to achieve a real-time implementation for an
H.263 video encoder. They report average frame rates of 16.1
and 11.3 fps (QCIF) for MMX- and VIS-optimized versions on
a 233-MHz Pentium II and a 167-MHz Sun UltraSPARC-1, re-

TABLE III
SPEED-UPS ON VIDEO CODING KERNELS OBTAINED WITH

PLATFORM-INDEPENDENTOPTIMIZATIONS

spectively. Moreover, individual frame rates ranging from 35.3
to 45.7 fps on a 600-MHz Pentium III are reported. Bit rates
ranging from 25 to 128 kbps were used [1], [2].

Erol et al.propose several platform-independent and depen-
dent optimizations for an H.263 decoder and encoder. They
report individual frame rates of 14 and 17 fps (QCIF) for an
MMX-enhanced H.263 encoder on a 200-MHz Pentium MMX
[24].

Lappalainenet al.propose several platform-independent and
dependent optimizations for an H.26L video decoder and en-
coder. For the highly-optimized decoder, they report an average
frame rate of 117 fps (QCIF) on a 400-MHz Pentium III pro-
cessor [45]. For the highly optimized encoder, they achieve an
average frame rate of 17 fps (QCIF) on a 733-MHz Pentium III
processor [44]. Bit rates ranging from 8 to 25 kbps were used.

Tung et al. report average frame rates of 72 and 20 fps for
MMX-optimized MPEG-1 and MPEG-2 video decoders on a
200-MHz Pentium MMX processor. For MPEG-2, a bit rate of
8 Mbps was used [78].

Casalinoet al. report individual frame rates of 50–62 (CIF)
and 190–405 fps (QCIF) for an MMX-enhanced MPEG-4 video
decoder on a 266-MHz Pentium II dual processor [12].

Moriyoshiet al.describe an MMX-enhanced MPEG-4 visual
codec (Simple Profile, Levels 1–3), which uses a fast adaptive
motion vector search during the motion estimation. They report
an average frame rate of 30 fps (CIF) for the MPEG-4 codec
(i.e., both encoding and decoding are included) on a 450-MHz
Pentium II processor [61].

In a recent study by McVeighet al., software-based real-time
MPEG-2 (Main Profile, Main Level) video encoding is demon-
strated on a 500-MHz Pentium III processor with less than 70%
CPU usage. The main contribution of this work is a set of al-
gorithmic simplifications (some of which are nonconformable
with the MPEG-2 standard) that reduce complexity at the ex-
pense of degraded compression performance. The fastest ver-
sion of their encoder achieves approximately the same visual
quality operating at 6 Mbps as the reference implementation
does at 4.5 Mbps. The version producing the best quality con-
sumes 97% of the CPU usage on a 500-MHz processor [59].

Table IV summarizes the above-mentioned frame rate results
and Table V summarizes the speed-up figures. Again, MMX is
the most often used ISA extension and both encoders and de-
coders exceed the real time performance limit. What comes to
the speed-ups, the gain of using both algorithmic optimizations
and SIMD media extension instructions could be even tenfold.
However, when comparing to optimized reference implementa-
tions, the speed-up is typically less than two.

664 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 12, NO. 8, AUGUST 2002

TABLE IV
PERFORMANCE OFVIDEO CODING APPLICATIONS ONSEVERAL PLATFORMS

WITH SIMD MEDIA ISA EXTENSIONS

IV. COMPARISONS OFOPTIMIZED IMPLEMENTATIONS

It is quite demanding to compare the performance of re-
ported implementations, because of both different experimental
arrangements and different performance metrics. Moreover,
both of these factors are usually documented with different
levels of details.

When evaluating the performance of video encoding or de-
coding applications, the following pieces of information about
the experiments should be documented so as to yield reliable re-
sults. First, the properties of the source video sequences should
be described. Second, both the encoding parameters that were
used to generate the encoded bit streams and all implementation
alternatives that can be selected freely such as block-matching
algorithm should be explained. Finally, the experimentation en-
vironment should be documented. The items of information in
these three categories are divided into two classes called “re-
quired info” and “useful info,” as shown in Tables VI–VIII.

The following performance metrics are commonly used.
First, a measure of complexity such as average decoding time
of a frame or encoding or decoding speed in frames per second
is required. Second, a measure of video quality such as PSNR
would be very useful. The PSNR should be reported at least
for the luminance components of the frames. Third, is would
be very useful to report the compression performance by
using PSNR versus bit rate curves. Finally, it would be useful
to compare also subjective video quality in some cases, for
example when there are two competing proposals targeting a
video coding standard. More details on performance evaluation
and comparison of video coding systems are given in [46]
and [9]; the former focuses on complexity, the latter on video
quality and compression performance.

TABLE V
SPEED-UPS ONVIDEO CODING APPLICATIONSOBTAINED USING BOTH

PLATFORM-INDEPENDENTOPTIMIZATIONS AND SIMD MEDIA ISA EXTENSIONS

TABLE VI
SOURCEVIDEO SEQUENCES

TABLE VII
ENCODING PARAMETERS AND IMPLEMENTATION ALTERNATIVES

TABLE VIII
EXPERIMENTATION ENVIRONMENT

In the following, comparisons are given for four most similar
implementations of an H.263 encoder reported by Lappalainen
[42], [44] (two different implementations), Erolet al. [23], [24]
and Akramullahet al. [1], [2].

LAPPALAINEN et al.: OVERVIEW OF RESEARCH EFFORTS ON MEDIA ISA EXTENSIONS 665

TABLE IX
SOURCEVIDEO SEQUENCES

TABLE X
ENCODING PARAMETERS AND IMPLEMENTATION ALTERNATIVES

TABLE XI
EXPERIMENTATION ENVIRONMENT

A. Performance of H.263 Encoder Implementations on
Pentium Processor With MMX Technology

Tables IX–XI summarize the information about the experi-
ments used in the two studies; the first is conducted by Erolet
al., the second by Lappalainen.1

Erol et al. use algorithmic optimizations for DCT, IDCT,
quantization, and half-pixel motion estimation. Additionally,
they use platform-dependent MMX optimizations on DCT,
IDCT, integer, and half-pixel motion estimation, image in-
terpolation, motion compensation, SAD calculation, data
interleaving, and memory copying routines.

Lappalainen uses algorithmic optimizations for half-pixel
motion estimation and quantization. Additionally, MMX
optimizations on DCT, IDCT, quantization and inverse quan-
tization, integer and half-pixel motion estimation, image
interpolation, motion compensation, and SAD calculation are
used.

Due to the use of variable bit rate, Erolet al.always achieve
the target frame rate of 10 fps, while in Lappalainen’s study,
the target bit rate is always achieved but the target frame rate
may not always be reached. Lappalainen uses the Unrestricted

1It should be noted that most of the commonly used source sequences can
be found at http://kbs.cs.tu-berlin.de stewe/vceg/sequences.htm or http://stan-
dard.pictel.com/ftp/video-site/sequences/.

TABLE XII
PERFORMANCE OFTWO H.263 ENCODERIMPLEMENTATIONS ON 200 MHZ

PENTIUM PROCESSORWITH MMX T ECHNOLOGY

Motion Vector (Annex D of H.263) and Advanced Prediction
(Annex F of H.263) Modes, which increases complexity.

The following experiments performed by Lappalainen cor-
respond quite accurately to the ones performed by Erolet al.:
Akiyo at 8 kbps with the average QP of 14 and frame rate of
10 fps and Foreman at 28 kbps with the average QP of 19 and
frame rate of 9 fps. Erolet al.achieve frame rates of 14 fps and
17 fps for the Foreman and Akiyo sequences, respectively.

If Lappalainen’s results, obtained on a 133-MHz Pentium
MMX, are scaled up to correspond to the results of Erolet al.
obtained on a 200-MHz processor, the resulting frame rates are
about 1.5 times higher: 21 and 26 fps for Foreman and Akiyo,
respectively. The results of this comparison are summarized in
Table XII.

This scaling is reasonable and accurate because there are no
architectural differences between these two processors; the only
difference is the clock frequency. More details on scaling the
results can be found in [2].

In fact, this comparison should be reliable, because of several
equivalent implementation options such as the block-matching
algorithm and equivalent encoding parameters such as video se-
quences and reference frame rates. Although the bit rates and
QPs are not equivalent, they are sufficiently close to each other
to make the comparison accurate. However, for a complete com-
parison, it is very important to take into account objective video
quality. Furthermore, the experimentation environment should
be identical.

B. Performance of H.263 Encoder Implementations on
Pentium III Processor

Akramullahet al.describe the performance and several opti-
mizations of an H.263 encoder on both Pentium II and Pentium
III processors. Although as accurate a comparison as the one
presented above is not possible, because of several different en-
coding parameters and implementation options, it is still reason-
able to perform comparisons with the results obtained on Pen-
tium III by Lappalainenet al.Tables XIII–XV summarize the
information about the experiments used in the two studies.

Akramullah et al. utilize extensive algorithmic, code and
compiler optimizations including MMX optimizations of DCT,
IDCT, and motion estimation. They use a fast, zone-based,
block-matching algorithm [30] with some modifications [1].
The DCT algorithm used is described in [70, Appendix A.2].

The H.263 encoder used by Lappalainenet al. in [44] is sim-
ilar to the one used in [42]; the only difference is the two-
level hierarchical motion estimation with the full-search block-
matching algorithm.

666 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 12, NO. 8, AUGUST 2002

TABLE XIII
SOURCEVIDEO SEQUENCES

TABLE XIV
ENCODING PARAMETERS AND IMPLEMENTATION ALTERNATIVES

TABLE XV
EXPERIMENTATION ENVIRONMENT

The Akiyo at 26.8 and 44.3 kbps experiments performed by
Lappalainenet al. correspond approximately to Akramullah’s
results on Claire at 27.0 kbps, Grandma at 25.8 kbps, Miss
America at 31.2, and Salesman at 41.1 kbps. Akramullah
achieves frame encoding speeds of 46, 45, 45, and 44 fps for
Claire, Grandma, Miss America, and Salesman, respectively.

If the results of Lappalainenet al., obtained on a 733-MHz
Pentium III are scaled down to correspond to Akramullah’s
results obtained on a 600-MHz processor, the resulting frame
encoding speeds are about 1.2 times higher: 54 fps and 53
fps for Akiyo at 26.8 and 44.3 kbps, respectively. However,
Akramullahet al. have encoded every frame of the sequence,
while Lappalainen has encoded only every third frame of the
sequence, as the target frame rates of 30 and 10 fps indicate.
In general, the complexity of whole encoding task does not
grow linearly with the target frame rate, because motion
estimation is less complex with higher target frame rates. In
Akramullah’s implementation, motion estimation consumes
about 30% of the execution time. Thus, it can be concluded that
Akramullah’s implementation is clearly faster. However, for a

TABLE XVI
PERFORMANCE OFTWO H.263 ENCODERIMPLEMENTATIONS ON 600-MHZ

PENTIUM III PROCESSOR

complete comparison, it is very important to take into account
objective video quality, as already mentioned. The results of
this comparison are summarized in Table XVI.

V. FUTURE TRENDS

Recently, there have been studies which propose some hard-
ware or compiler techniques to improve the performance ob-
tained with today’s ISA extensions. The efforts are trying to in-
crease the performance in five distinct main areas.

First, the number of operations executed per one instruction
is being extended so that more complex functionality can be
performed. Additionally, reconfigurable techniques can be used.

Second, the level of parallelism can be increased. Multi-
threaded architectures combined with both SIMD media ISA
extensions and long vector architectures have been proposed.
Utilization of thread-level parallelism is reasonable, because
according to our experiences on video coding, the data-level
parallelism cannot be easily exposed beyond the currently
available level of parallelism in SIMD media ISAs.

Third, flexibility in data-dependent control constructs is in-
creased by conditional vector processing and automatic data
alignment. This flexibility is necessary in multimedia applica-
tions if the data-level parallelism is to be increased because mul-
timedia applications differ from traditional applications that are
executed on vector processors (e.g., scientific computations) in
that they have more data-dependent computations.

Fourth, research on optimization of subword sizes has yielded
at least two improvement proposals; arbitrary boundary-packed
arithmetic, as well as hardware mechanisms for dynamically
recognizing and capitalizing narrow-bit-width operations, have
been proposed.

Finally, research on compilation techniques has reduced the
complexity of the programming task.

A. Increasing Functionality

Uenget al. describe the design of ISA extensions, called a
Multimedia Function Unit (MFU), utilized in NSC-98, which
is an experimental MMX-compatible CPU. They propose three
additional instructions: 1) permutation; 2) parallel distance
computation; and 3) parallel average computation. They also
study various design alternatives related to MFU subunits.
The proposed instructions improve further the original MMX

LAPPALAINEN et al.: OVERVIEW OF RESEARCH EFFORTS ON MEDIA ISA EXTENSIONS 667

extensions, especially when video coding algorithms are
implemented and the same instructions have been implemented
in some commercial SIMD media ISA extensions such as VIS
and SSE. For example, the parallel distance computation is
essentially a video encoding instruction and it constitutes the
majority of computational speed-up of the given examples [79].

Villalba et al.propose an MMX-like architecture extension to
support the vector rotation operation, which is derived from the
well-known CORDIC architecture. It supports many types of
signal processing algorithms such as DCT with quite small mod-
ifications. They approach could be extended to support other
butterfly type of operations on vectors, although this can also
be achieved with certain permutation operations as described
below [80].

Berekovicet al. propose extensive ISA extensions special-
ized for MPEG-4 video coding and decoding. These extensions
add function-specific or almost application-specific blocks
to the datapath of a CPU. In addition to block-based coding
(MPEG-4 simple profile), they target their extensions at
object-based coding (MPEG-4 core or main profiles), which
are not as generic as the traditional media ISA extensions.
They target the new functions that are being incorporated in
new multimedia standards and not so much present in earlier
standards such as MPEG-1 and MPEG-2 [5].

Lee proposes a new permutation instruction, which achieves
maximum subword permutation performance with half the
hardware cost of the previous solution. She defines subword
rearrangements for 2-D blocks [55].

Lee also defines an alphabet of fundamental permutation
primitives along with new permutation instructions covering
these primitives. Together, all these permutations extend the
generic usefulness of SIMD media ISA extensions by enabling
nonstraight-forward data rearrangements [56].

Yanget al.extend the work of Lee by proposing a new instruc-
tionthatreducesthesubwordpermutationproblemtoasinglebut-
terfly type permutation instruction. The use of this instruction is
limited to a given subword width. It simplifies the permutation
problematic, although it does not provide optimum implementa-
tion for every case compared to Lee’s proposals [84].

Wonget al.propose a multimedia enhanced general-purpose
processor architecture called M GPP. Additionally, they
discuss reconfigurable hardware units to support the execution
of new media instructions [82]. In a recent study, they extend
their previous study by proposing new instructions for the DCT
and Huffman operations. Simulation results are also provided to
show the usefulness of the extensions [83]. The use of reconfig-
urable blocks for ISA extensions would open new possibilities to
speed-up a variety of functions without being too function-spe-
cific. Wong have described the possible control mechanisms of
such units. However, further studies wouldbe needed concerning
the optimum set of basic building blocks in these reconfigurable
units for multimedia applications, for example.

B. Increasing Parallelism

Many proposals to increase parallelism attempt to include tra-
ditional vector processing instead of combining a complex su-
perscalar core with short vector processing.

Lee and Stoodley started with MIPS R10000 architecture and
modified it to represent a vector processor with long vectors and
simple control logic [54]. They show that a two-issue, 64-long
vector processor outperforms a four-issue superscalar with short
vector extensions with equal area cost. Their proposal is limited
to uni-threaded architecture, which is suitable for speeding up
kernel computation.

Simultaneous Multi Thread (SMT) execution is rapidly
becoming applied in implementations. Oehringet al. model
PowerPC 604 and extend it to support SMT processing with
MMX-like ISA extensions [66]. They suggest that a four-issue,
at least two-threaded architecture would be optimal over the
reference superscalar architecture.

Corbal et al. use R10000 as a reference and have pre-
sented a matrix-oriented architecture that combines traditional
ISA SIMD to vector processing [16], [17]. They show that
SMT provides 2.1X speed-up over reference MMX model.
SMT combined to their matrix architecture provides 3.3X
increase in performance over uni-threaded MMX model. As
a conclusion, they propose a future media processor should
combine SMT and scalar oriented SIMD extensions to exploit
explicit thread-level parallelism and decrease issue width and
instruction fetch bandwidth.

Several proposals have also been made for system-on-chip
or chip-multiprocessor implementations, where several simple
processors contribute the media computation. In one extreme,
the processor consists of dedicated streaming units. However,
these cannot be considered as extensions to general-purpose
processors and are not considered in this paper.

C. Increasing Flexibility of Control Constructs

Smith et al. provide a good summary of support of condi-
tional operations on vector processors to date. Moreover, they
conclude that solutions whose performance depends on the frac-
tion of valid values in a vector are preferred to those whose per-
formance depends simply on the length of the vector. They also
state that the current SIMD media ISA extensions, which use
short vectors with SIMD implementations, are to be replaced by
long vector, pipelined implementations in the future. According
to them, long vectors have a number of advantages and are a
logical next step in media ISA development [72].

Kapasi et al. discuss efficient conditional operations for
data-parallel architectures, especially for SIMD architectures.
In general, data-dependent control constructs reduce efficiency
of data-parallel architectures, as the constructs do not map well
to these architectures. Conditional streams are a mechanism
to convert these control constructs into data-dependent data
movement operations (routing) and can result in significant
speed-ups on media processing applications such as a speed-up
of 1.8 for polygon rendering, as shown by the results obtained
from simulations [36].

Fridman presents an approach to data alignment for subword
parallel computation using an alignment resource called data
alignment buffer (DAB). The benefits of this approach over
those in other processors are that it achieves high computational
efficiency primarily because the DAB can be tightly scheduled
in software, which results in smaller code (requiring less soft-
ware loop unrolling) [26].

668 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 12, NO. 8, AUGUST 2002

D. Optimization of Subword Sizes

Brooks and Martonosi propose hardware mechanisms that
dynamically recognize and capitalize on narrow-bitwidth (16
bits or less) instances in programs without any compiler inter-
vention. They describe two optimizations: power- and perfor-
mance-oriented ones. The latter one is more interesting in the
context of this study. It improves performance by merging to-
gether narrow-integer operations and by allowing them to share
a single functional unit. Simulated results show speed-ups of 7%
and 15% for MPEG-2 decoding and encoding, respectively [9].

Balakrishnan and Nandy propose a subword parallel scheme
with arbitrary sized subwords in addition to currently used sizes
of 8, 16, 32, and 64 bits. The motivation behind their work is
based on the fact that several operations, such as DCT and mo-
tion compensation, need also different sizes, e.g., 12- and 9-bit
sized subwords. They also discuss the implementation of arbi-
trary boundary-packed addition [4].

Karthikeyan and Ranganathan extend the work on arbitrary
boundary packed arithmetic by presenting a packed multipli-
cation scheme based on the Wallace tree algorithm. They also
describe how to implement saturation arithmetic for arbitrary
boundary-packed addition [38].

E. Compiler Issues

In general, there has been no compiler support for producing
optimized MMX or any other code based on SIMD media
ISA extensions. Thus, high-performance MMX code requires
writing hand-optimized assembly code either by using inline
assembly code available in, e.g., Microsoft’s compiler or using
C wrappers such as intrinsics available in Intel’s compiler.
Vectorizing compilers that can turn scalar C code into parallel
MMX assembly code without user intervention have been
introduced by Intel, for example. Still, the performance of
the code generated by the compiler has not reached that of
hand-optimized code in general. Perhaps the easiest, but the
most limited way of utilizing SIMD media ISA extensions is
to use existing library code, such as Intel’s Image Processing
Library. Recently, few studies have addressed this problem.

Conteet al.discuss the complexity of the programming model
of MMX and SSE. Moreover, they introduce a programming
methodology and the Aphelium compiler. Of video coding oper-
ations, IDCT is selected as an example case. It is demonstrated
that Aphelium is able to output high-quality MMX code that
matches the speed of the code hand-optimized by Intel, without
requiring deep assembly-coding expertise from the user. The
performance of Aphelium is based on optimizing the code for
MMX and Intel P6 processor core, which is used in all Pentium
processors since Pentium Pro. Thus, there is no support for other
ISA extensions or processor cores [15].

Larsen and Amarasinghe propose a robust compiler algorithm
for synthesizing SIMD instructions from the statements in single
basicblocks insteadof in loopnestsonly.Althoughtheirapproach
can be applied to many SIMD media ISA extensions, they be-
lieveAltiveccanbestutilize thealgorithm.Theyreportspeed-ups
for SPEC95 fp and multimedia kernels such as FIR filtering and
RGBtoYUVconversion that range from1.2 to6.7ona450-MHz
Motorola MPC7400 processor with the Altivec extensions. Most

of the benchmarks use single-precision floating point numbers;
RGB to YUV conversion uses 16-bit integers [47].

Leupers presents a novel code selection technique capable of
exploitingSIMDinstructionsalsowhencompilingplainCsource
code. Itpermits to takeadvantageofSIMDinstructionswhilestill
using portable source code. His approach builds on the classical
tree-based code selection paradigm, but it generates alternative
covers. The detailed code selection is performed only later, when
enoughinformationforthegenerationofSIMDinstructionsforan
entiredataflowgraphisavailable.Theresults for2-and4-parallel
SIMD processing, presented for TI C62xx and Philips Trimedia
TM1000showthat it ispossibletoreducethenumberofcompiler-
generated machine instruction by using portable C code. A 50%
reduction in the instruction count was obtained for the vector add
and image decomposition kernels [57].

VI. CONCLUSION

As numerous research efforts on SIMD media ISA extensions
indicate, the new, proposed hardware techniques contain poten-
tial for improved performance.

On the other hand, the continuous research efforts on the opti-
mized implementations of video coding algorithms produce in-
creasingly higher performance on existing processors. Here, the
challenge of compilation and code generation will probably re-
main and might even increase with the newly proposed hard-
ware techniques. Currently, obtaining high-performance code
requires manually writing hand-optimized assembly code.

In an open application development environment, there is a
clear demand for supporting different functions for compilation.
This could be achieved via special fixed programming models,
data types, or Application Programming Interface (APIs) that
would implement larger functional entities than single instruc-
tions. As is well known, such an approach (e.g., OpenGL) has
taken place in the 3-D computer graphics domain. As video ap-
plications and their basic algorithms will stabilize more, this
kind of approach could also be possible.

Inthecontextof3-Dgraphicsapplications,firsttherewasastan-
dardizedAPI,andonlyafterthat,hardwareimplementationsofthe
functions in this API were realized. Contrary to 3-D graphics ap-
plications, video applications first utilized hardware implemen-
tations of several algorithms such as DCT, and only in the future
could a standardized, more general API potentially be expected.

Recently,DSPssuchasTI’sTMS320C64xandembeddedgen-
eral-purposeprocessorssuchasARMhaveannouncedtheirSIMD
media ISA extensions. Although the majority of current research
onSIMDmedia ISAextensions is focusedonMMX,SSE,MAX,
and VIS extensions available in PC and workstation processors,
these extensions share a number of fundamental similarities with
theonesavailable inmodernembeddedprocessors.Thus, toacer-
tainextent,thecurrentresearchresultsareapplicabletomobilede-
vices that utilize modern embedded processors.

ACKNOWLEDGMENT

The authors would like to thank Dr. R. Castagno and Prof. J.
Takala for useful discussions and comments. Also, the authors
would like to thank the anonymous reviewers who have helped
to improve the quality of this paper.

LAPPALAINEN et al.: OVERVIEW OF RESEARCH EFFORTS ON MEDIA ISA EXTENSIONS 669

REFERENCES

[1] S. M. Akramullah, “Software-based video encoding using high-perfor-
mance computing,” Ph.D. dissertation, Dept. Elect. Electron. Eng., The
Hong Kong Univ. of Sci. and Technol., Hong Kong, 1999.

[2] , “Optimization of H.263 video encoding using a single processor
computer: Performance tradeoffs and benchmarking,”IEEE Trans. Cir-
cuits Syst. Video Technol., vol. 11, pp. 901–915, Aug. 2001.

[3] Y. Arai, T. Agui, and M. Nakajima, “A fast DCT-SQ scheme for im-
ages,”Trans. IEICE, pp. 1095–1097, 1988.

[4] S. Balakrishnan and S. K. Nandy, “Arbitrary precision arith-
metic—SIMD style,” inProc. 11th Int. Conf. VLSI Design, 1998, pp.
128–132.

[5] M. Berekovicet al., “Instruction set extensions for MPEG-4 video,”J.
VLSI Signal Processor 23, pp. 27–49, 1999.

[6] D. Bhandarkar and J. Ding, “Performance characterization of the Pen-
tium Pro processor,” inProc. 3rd Int. Symp. High-Performance Com-
puter Architecture, 1997, pp. 288–297.

[7] R. Bhargava, L. K. John, B. L. Evans, and R. Radhakrishnan, “Eval-
uating MMX technology using DSP and multimedia applications,” in
Proc. 31st Annu. ACM/IEEE Int. Symp. Microarchitecture MICRO-31,
1998, pp. 37–46.

[8] V. Bhaskaranet al., “Algorithmic and architectural enhancements for
real-time MPEG-1 decoding on a general purpose RISC workstation,”
IEEE Trans. Circuits Syst. Video Technol., vol. 5, pp. 380–386, Oct.
1995.

[9] G. Bjontegaard, “Recommended Simulation Conditions for H.26L,”
ITU-T SG16 Doc. VCEG-M75, 2001.

[10] D. Brooks and M. Martonosi, “Dynamically exploiting narrow width
operands to improve processor power and performance,” inProc. 5th
Int. Symp. High-Performance Computer Architecture, 1999, pp. 13–22.

[11] D. A. Carlson, R. W. Castelino, and R. O. Mueller, “Multimedia exten-
sions for a 550-MHz RISC microprocessor,”IEEE J. Solid-State Cir-
cuits, vol. 32, pp. 1618–1624, Nov. 1997.

[12] F. Casalinoet al., “MPEG-4 video decoder optimization,” inProc.
IEEE Int. Conf. Multimedia Computing and Systems, vol. 1, 1999, pp.
363–368.

[13] W.-H. Chen, C. H. Smith, and S. C. Fralick, “A fast computational algo-
rithm for the Discrete Cosine Transform,”IEEE Trans. Commun., vol.
COM-25, pp. 1004–1009, 1977.

[14] W. Chen et al., “Native signal processing on the Ultrasparc in the
Ptolemy environment,” inConf. Rec. 30th Asilomar Conf. Signals,
Systems and Computers, vol. 2, 1997, pp. 1368–1372.

[15] G. Conteet al., “The long and winding road to high-performance image
processing with MMX/SSE,” inProc. 5th Int. Workshop Computer Ar-
chitectures for Machine Perception, 2000, pp. 302–310.

[16] J. Corbalet al., “Exploiting a new level of DLP in multimedia applica-
tions,” in Proc. MICRO -32, Haifa, Israel, Nov. 1999.

[17] , “DLP + TLP processors for the next generation of media work-
loads,” inProc. 7th Int. Symp. High-Performance Computer Architec-
ture HPCA, 2001, pp. 219–228.

[18] Z. Cvetanovic and D. Bhandarkar, “Performance characterization of
the Alpha 21 164 microprocessor using TP and SPEC workloads,” in
Proc. 2nd Int. Symp. High-Performance Computer Architecture, 1996,
pp. 270–280.

[19] I. Defee, “Software decoding of HDTV,”IEEE Trans. Consumer Elec-
tron., vol. 45, pp. 1277–1283, Nov. 1999.

[20] K. Diefendorffet al., “AltiVec extension to PowerPC accelerates media
processing,”IEEE Micro, vol. 20, pp. 85–95, Mar.–Apr. 2000.

[21] T. A. Diep, C. Nelson, and J. P. Shen, “Performance evaluation of the
PowerPC 620 microarchitectur,” inProc. 22nd Annu. Int. Symp. Com-
puter Architecture, 1995, pp. 163–174.

[22] S. Eckart, “High performance software MPEG video player for PC’s,”
in Proc. SPIE, vol. 2419, Feb. 1995, pp. 446–454.

[23] B. Erol et al., “Implementation of a fast H.263+ encoder/decoder,” in
Conf. Rec. 32nd Asilomar Conf. Signals, Systems, and Computers, vol.
1, 1998, pp. 462–466.

[24] , “Efficient coding and mapping algorithms for software-only
real-time video coding at low bit rates,”IEEE Trans. Circuits Syst.
Video Technol., vol. 10, pp. 843–856, Sept. 2000.

[25] M. Ferretti, “Multi-media extensions in super-pipelined microarchi-
tectures. A new case for SIMD processing?,” inProc. 5th IEEE Int.
Workshop Computer Architectures for Machine Perception, 2000, pp.
249–258.

[26] J. Fridman, “Sub-word parallelism in digital signal processing,”IEEE
Signal Processing Mag., pp. 27–35, Mar. 2000.

[27] M. Gallant et al., “An efficient computation-constrained block-based
motion estimation algorithm for low bit rate video coding,”IEEE Trans.
Image Processing, vol. 8, pp. 1816–1823, Dec. 1999.

[28] P. N. Glaskowsky, “Pentium 4 (Partially) Previewed,” Cahners Micro-
processor Report—The Insider’s Guide to Microprocessor Hardware,
2000.

[29] M. A. Greene, “Pentium processor with MMX technology perfor-
mance,” inProc. IEEE Compcon, 1997, pp. 263–267.

[30] Z. L. He and M. L. Liou, “A high performance fast search algorithm for
block matching,”IEEE Trans. Circuits Syst. Video Technol., vol. 7, pp.
101–111, Nov. 1997.

[31] P. Hsu and K. J. R. Liu, “Software optimization of H.263 video encoder
on Pentium processor with MMX technology,” inProc. IEEE Multi-
media and Expo, New York City, NY, Aug. 2000.

[32] A. Huttunen and I. Defee, “Performance of desktop software MPEG-2
TS decoder,” inProc. 1999 IEEE Int. Symp. Circuits and Systems, vol.
4, 1999, pp. 352–355.

[33] M. Lkekawaet al., “A real-time software MPEG-2 decoder for mul-
timedia PC’s,” inDig. Tech. Papers Int. Conf. Consumer Electronics
ICCE, 1997, pp. 2–3.

[34] Intel. (1999) Using MMX technology instructions to com-
pute a 16-bit FIR filter. [Online]. Available: http://devel-
oper.intel.com/drg/mmx/AppNotes/ap559.htm

[35] D. Ishii, M. Ikekawa, and I. Kuroda, “Parallel variable length decoding
with inverse quantization for software MPEG-2 decoders,” inProc.
IEEE Workshop Signal Processing Systems—Design and Implementa-
tion, 1997, pp. 500–509.

[36] Video Codec Test Model Near-Term Version 7 (TMN7), ITU-T Study
Group 15, 1997.

[37] U. J. Kapasiet al., “Efficient conditional operations for data-parallel
architectures,” inProc. IEEE/ACM Int. Symp. Microarchitecture, Dec.
2000, pp. 159–170.

[38] P. S. Karthikeyan and P. S. Ranganathan, “More on arbitrary boundary
arithmetic,” inProc. IEEE 5th Int. Conf. High Performance Computing,
1998, pp. 19–24.

[39] D. Kim and G. Choe, “AMD’s 3DNow! vectorization for signal pro-
cessing applications,” inProc. IEEE Int. Conf. Acoustics, Speech and
Signal Processing, vol. 4, 1999, pp. 2127–2130.

[40] L. Kohnet al., “The visual instruction set (VIS) in UltraSPARC,” inDig.
Papers Compcon ’96—Technologies for the Information Superhighway,
1995, pp. 462–469.

[41] C. E. Kozyrakis and D. A. Patterson, “A new direction for computer
architecture research,”IEEE Computer, pp. 24–32, Nov. 1998.

[42] V. Lappalainen, “Performance analysis of Intel MMX technology for an
H.263 video encoder ,” inProc. 6th ACM Int. Multimedia Conf., Bristol,
U.K., Sept. 1998.

[43] , “Performance of an advanced video codec on a general-purpose
processor with media ISA extensions,”IEEE Trans. Consumer Elec-
tron., vol. 45, Aug. 2000.

[44] V. Lappalainen, A. Hallapuro, and T. D. Hämäläinen, “Optimization of
emerging H.26L video encoder,” inProc. IEEE Workshop Signal Pro-
cessing Systems Design and Implementation, Antwerp, Belgium, Apr.
2001.

[45] V. Lappalainenet al., “Optimized implementations of emerging H.26L
video decoder on Pentium III,” inAdvances in Signal Processing and
Computer Technologies, G. Antoniou, N. Mastorakis, and O. Panfilov,
Eds. Crete, Greece: WSES Press, July 2001, pp. 233–238.

[46] , “Low bit rate video coding on general-purpose processor,”
Dr.Technol. dissertation, Tampere Univ. of Technol., Tampere, Finland,
2001.

[47] S. Larsen and S. Amarasinghe, “Exploiting superword level parallelism
with multimedia instruction sets,” inProc. ACM SIGPLAN ’00 Conf.
Programming Language Design and Implementation, June 2000, pp.
145–156.

[48] R. Lee, “Accelerating multimedia with enhanced microprocessors,”
IEEE Micro, vol. 15, pp. 22–32, Apr. 1995.

[49] , “Real-time MPEG video via software decompression on a
PA-RISC processor,” inDig. Papers IEEE Compcon—Technologies for
the Information Superhighway, 1995, pp. 186–192.

[50] , “Subword parallelism with MAX-2,”IEEE Micro, vol. 16, pp.
51–59, Aug. 1996.

[51] R. Lee and J. Huck, “64-bit and multimedia extensions in the PA-RISC
2.0 architecture,” inDig. Papers Compcon ’96—Technologies for the
Information Superhighway, 1996, pp. 152–160.

[52] R. Lee, “Multimedia extensions for general-purpose processors,”
in Proc. IEEE Workshop Signal Processing Systems—Design and
Implementation, 1997, pp. 9–23.

670 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 12, NO. 8, AUGUST 2002

[53] R. Lee and L. McMahan, “Mapping of application software to the multi-
media instructions of general-purpose microprocessors,” inProc. SPIE,
vol. 3021, 1997, pp. 122–133.

[54] C. G. Lee and M. G. Stoodley, “Simple vector microprocessors for mul-
timedia applications,” inProc. IEEE/ACM Int. Symp. Microarchitecture,
Nov. 1998, pp. 25–36.

[55] R. B. Lee, “Efficiency of microSIMD architectures and index-mapped
data for media processors,” inProc. SPIE, vol. 3655, 1999, pp. 34–46.

[56] , “Subword permutation instructions for two-dimensional multi-
media processing in microSIMD architectures,” inProc. IEEE Int. Conf.
Application-Specific Systems, Architectures and Processors, 2000, pp.
3–14.

[57] R. Leupers, “Code selection for media processors with SIMD instruc-
tions,” inProc. ACM Conf. Design, Automation and Test in Europe, Mar.
2000, pp. 4–8.

[58] C. Loeffleret al., “Practical fast 1-D DCT algorithm with eleven multi-
plications,” inProc. ICASSP ’89, 1989, pp. 988–991.

[59] J. McVeighet al., “A software-based real-time MPEG-2 video encoder,”
IEEE Trans. Circuits Syst. Video Technol., vol. 10, pp. 1178–1184, Oct.
2000.

[60] MIPS Technologies. (1997) MIPS extension for digital media with 3D.
[Online]. Available: http://www.mips.com

[61] T. Moriyoshi et al., “Real-time software video codec with a fast adap-
tive motion vector search,” inProc. IEEE Workshop Signal Processing
Systems, 1999, pp. 44–53.

[62] Z. J. A. Mou et al., “VIS-based native video processing on Ultra-
SPARC,” inProc. IEEE Int. Conf. Image Processing, vol. 2, 1996, pp.
153–156.

[63] E. Murataet al., “Fast 2D IDCT implementation with multimedia in-
structions for a software MPEG2 decoder,” inProc. IEEE Int. Conf.
Acoustics, Speech and Signal Processing, vol. 5, 1998, pp. 3105–3108.

[64] H. Nguyen and L. K. John, “Exploiting SIMD parallelism in DSP and
multimedia algorithms using the AltiVec technology,” inProc. Int. Conf.
Supercomputing, 1999, pp. 11–20.

[65] S. Obermanet al., “AMD 3DNow! technology: Architecture and imple-
mentations,”IEEE Micro, vol. 19, pp. 37–48, Mar./Apr. 1999.

[66] H. Oehringet al., “MPEG-2 video decompression on simultaneous mul-
tithreaded processors,” inProc. IEEE/ACM Conf. Parallel Architectures
and Compilation Techniques, Newport Beach, CA, Oct. 1999.

[67] A. Peleg and U. Weiser, “MMX technology extension to the Intel archi-
tecture,”IEEE Micro, vol. 16, pp. 42–50, Aug. 1996.

[68] A. Peleg, S. Wilkie, and U. Weiser, “Intel MMX for multimedia PC’s,”
Commun. ACM, vol. 40, no. 1, pp. 25–38, Jan. 1997.

[69] P. Ranganathanet al., “Performance of image and video processing with
general-purpose processors and media ISA extensions,” inProc. 26th
Int. Symp. Computer Architecture, 1999, pp. 124–135.

[70] K. P. Rao and P. Yip,Discrete Cosine Transforms: Algorithms, Advan-
tages, Applications. New York: Academic, 1990.

[71] D. S. Rice, “High-performance image processing using special-purpose
CPU instructions: The UltraSPARC visual instruction set,” Master’s
thesis, Stanford Univ., Stanford, CA, 1996.

[72] J. E. Smithet al., “Vector instruction set support for conditional op-
erations,” inProc. Int. Symp. Computer Architecture, June 2000, pp.
260–269.

[73] D. Talla and L. K. John, “Execution characteristics of multimedia appli-
cations on a Pentium II Processor,” inProc. 19th IEEE Int. Performance,
Computing and Communications Conf., Feb. 2000, pp. 516–524.

[74] D. Talla et al., “Evaluating signal processing and multimedia applica-
tions on SIMD, VLIW and superscalar architectures,” inProc. IEEE Int.
Conf. Computer Design, Austin, TX, Sept. 2000.

[75] T. Thakkar and T. Huff, “The internet streaming SIMD extensions,”
IEEE Computer, pp. 26–34, Dec. 1999.

[76] R. Thekkath, “An architecture extension for efficient geometry pro-
cessing,” inProc. HOTCHIPS11, Aug. 1999, pp. 263–274.

[77] M. Tremblayet al., “VIS speeds new media processing,”IEEE Micro,
vol. 16, pp. 10–20, Aug. 1996.

[78] Y.-S. Tunget al., “MMX-based DCT and MC algorithms for real-time
pure software MPEG decoding,” inProc. IEEE Int. Conf. Multimedia
Computing and Systems, vol. 1, 1999, pp. 357–362.

[79] J.-F. Uenget al., “The design and performance analysis for the multi-
media function unit of the NSC-98 CPU,” inProc. IEEE Int. Conf. In-
formation, Communications and Signal Processing ICICS, vol. 3, 1997,
pp. 1513–1517.

[80] J. Villalbaet al., “MMX-like architecture extension to support the rota-
tion operation,” inProc. IEEE Int. Conf. Multimedia and Expo ICME,
2000, pp. 1383–1386.

[81] L. L. Winger, “Source adaptive software 2D IDCT with SIMD,” inProc.
IEEE Int. Conf. Acoustics, Speech and Signal Processing, vol. 6, 2000,
pp. 3642–3645.

[82] S. Wong, S. Cotofana, and S. Vassiliadis, “Multimedia enhanced gen-
eral-purpose processors,” inProc. IEEE Int. Conf. Multimedia and Expo
ICME, vol. 3, 2000, pp. 1493–1496.

[83] , “Coarse reconfigurable multimedia unit extension,” inProc. 9th
Euromicro Workshop Parallel and Distributed Processing, 2001, pp.
235–242.

[84] X. Yanget al., “Fast subword permutation instructions based on butterfly
networks,” inProc. SPIE—Media Processors 2000, vol. 3970, 2000, pp.
80–86.

[85] C.-G. Zhouet al., “MPEG video decoding with the UltraSPARC visual
instruction set,” inDig. Papers Compcon ’95—Technologies for the In-
formation Superhighway, 1995, pp. 470–477.

[86] D. F. Zucker, “Architecture and arithmetic for multimedia enhanced pro-
cessors,” Ph.D. dissertation, Dept. Elect. Eng., Stanford Univ., Stanford,
CA, 1997.

Ville Lappalainen was born in Lempäälä, Finland,
in 1974. He received the M.Sc. degree (with distinc-
tion) and the Dr.Technol. degree in computer science
from Tampere University of Technology, Tampere,
Finland, in 1997 and 2001, respectively.

In 1996, he joined Nokia Research Center,
Tampere, Finland, where he is a Project Manager
and Senior Research Engineer in the Media Proces-
sors Group. He has authored or coauthored about
15 scientific journal and conference articles. His
current research interests are in the area of video

coding, mainly in areas regarding architecture developments for efficient
implementations of video coding algorithms.

Timo D. Hämäläinen received the M.Sc. degree
(with distinction) in electrical engineering in 1993
and the Dr.Technol. degree in electrical engineering
and computer science in 1997, both from Tampere
University of Technology, Tampere, Finland.

He has been a Professor in the Institute of Dig-
ital and Computer Systems, Tampere University of
Technology, since 2001, where he leads several aca-
demic and industrial research projects. His research
interests are on parallel system-on-chip implementa-
tions for wireless multimedia systems, as well as au-

tomated mapping of algorithms on parallel platforms.

Petri Liuha received the M.Sc. degree in computer
science from Tampere University of Technology,
Tampere, Finland, in 1992.

From 1991 to 1992, he was an R&D Engineer
with Nokia Consumer Electronics. In 1993, he
joined Nokia Research Center, Tampere, Findland,
where he has worked as a Research Engineer in
different areas of implementation of video signal
processing and multimedia. Currently, he is a
Research Manager of the Media Processors Group.
His current research interests are in architectural

developments for implementations of multimedia applications.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

