
AUTOMATED TROUBLESHOOTING OF MOBILE NETWORKS
 USING BAYESIAN NETWORKS

R.Barco1 , R.Guerrero2, G.Hylander2, L.Nielsen3, M.Partanen2, S.Patel4
1Dpt. Ingeniería de Comunicaciones. Universidad de Málaga.

2Nokia Networks (Málaga, Spain)
3Nokia Networks (Aalborg, Denmark)

4Nokia Networks (Cambridge, UK)
C/Severo Ochoa s/n. Edif.Inst. Universitarios, Pl.3, Parque Tecnológico de Anadalucía, Málaga (Spain)

Abstract

In the current telecommunication scenarios operators
have to cope with fast technological changes while
increasing operational efficiency, i.e. diminishing
operational expenditures and, at the same time,
maximising performance of the networks. In this paper
we present an automated troubleshooting tool for
cellular networks, based on Bayesian networks, which
will contribute to improve operational efficiency. We
propose some Bayesian models for diagnosis in mobile
networks and we present a troubleshooting tool, which
uses those models to diagnose the cause of problems. A
knowledge acquisition tool is also presented, which
converts the knowledge of troubleshooting experts into
Bayesian models by means of a friendly user interface.
The models and tools have been tested in real mobile
networks and some results and conclusions are also
outlined in this paper.

Key Words: Troubleshooting, diagnosis, Bayesian
networks, mobile

1. Introduction

Mobile networks will face deep changes in the coming
years, due to the introduction of new technologies, new
services, and increased number of subscribers. In the
past, operators managed to cope with those changes and
the network growth by increasing their personnel.
However, this is not a feasible strategy anymore.
Furthermore, current expenditures for most operators
are mainly focused on operation and maintenance, more
than on customer service or on investing in new
equipment. Therefore, a viable option to maintain
network quality with the existing workforce, whilst
integrating new technology at the same time, is to
increase the level of automation.

Troubleshooting is part of the network operation and
maintenance process. If a cell is temporarily non-
operational due to a fault, probably neighbouring cells
will also be affected and the final result will be that the
whole network performance will be decreased.
Therefore, it is crucial to ensure that cells are rapidly
brought back into operation.

Currently, troubleshooting is mainly a manual
process, in which the person looking into the reasons for
the problem has to carry out a series of checks in order
to establish the causes of the problem. In this process,
several applications and databases have to be queried in
order to analyse performance data, cell configuration
and hardware alarms. The growing size of cellular
networks, together with the increasing complexity of the
network elements, creates a need for automated
troubleshooting. In order to fulfil this requirement, we
have developed a prototype troubleshooting method and
tool, which is currently undergoing trials and testing.

The troubleshooting tool automatically collects the
required information from the data sources and reasons
with this information related to the faulty cell in order to
generate a diagnosis of the cause(s) of the problem(s).

Thanks to the automated troubleshooting tool, highly
experienced staff can be released from mundane daily
troubleshooting tasks and can concentrate on other
aspects of network optimisation, thus increasing
network performance. One additional benefit is that
knowledge from different experts can be stored within
the tool, therefore making expert troubleshooting
knowledge available to the business at all times.

In this paper we present an application of artificial
intelligence to automated troubleshooting of cellular
networks. First, we present the current manual
troubleshooting procedures and we introduce the
required elements for automatic troubleshooting. The
proposed solution for automated troubleshooting is
based on Bayesian networks, addressed in Section 3.

In Section 4 we propose certain types of Bayesian
models with certain structural properties. The main
reason for investigating several structures is a trade-off
between diagnosis accuracy and model complexity.

We have developed two prototypes: A troubleshooting
tool, which is in charge of diagnosing the most probable
cause of problems based on automatically collected
evidences and Bayesian models; and a knowledge
acquisition tool, which converts the knowledge from
troubleshooting experts into Bayesian models (which
are used by the troubleshooting tool).

debbie

Both tools have been tested in real cellular networks
and the results of the trials are presented in Section 7.

Finally, Section 8 summarises our contributions and
discusses future work.

2. Operational Scenar io

2.1. Manual troubleshooting

The current scenario for troubleshooting in most
operators' networks is shown in Fig.1. In the figure, the
main elements involved in troubleshooting can be
observed:

� The reactive fault management team is responsible
for dealing with alarms generated on the network. They
filter the important alarms and raise troubletickets,
which reflect the problem status. Sometimes, they solve
the problem themselves and sometimes they leave the
troubleticket for further investigation.
� The proactive fault management team finds poorly
performing cells, based mainly on short-term statistics.
This team often uses scripts to generate a list of "worst
performing BTSs" and takes it as a starting point for
their work. Then, they look further into troubletickets
raised by the reactive team and raise new troubletickets.
They can solve parameter related problems, but they
will need to involve field engineers for problems related
to HW on the site.
� Field engineers travel to the BTS sites and fix HW
problems and any other problem requiring on-site
personnel. The field engineers receive a new daily plan
every morning containing the list of sites they must
visit.
� Finally, a minor part of troubletickets are raised by
technical support teams who may receive customer
complaints from call centers, management, engineering
staff, etc.

2.2. Automated troubleshooting

Automatic troubleshooting improves efficiency of
network operation personnel, quickly identifying causes
of problems and proposing solutions [1]. Furthermore, it
could be integrated with the management and
troubleticket system. The scenario for automated
troubleshooting is shown in Fig.2.

Automated troubleshooting consists of three steps:

• Fault detection: automatic detection of bad
performing cells based on performance indicators,
alarms, etc.
• Diagnosis or Cause identification: automatic
reasoning mechanisms to identify the cause of the
problems and the best sequence of actions to solve them
• Problem solving: executions of the action to solve
the problems

Hereafter when speaking about troubleshooting it will
be understood that we refer to cause identification,
keeping in mind that troubleshooting has a wider scope.
Fig.2 explains the automated troubleshooting procedure.
First, the knowledge of the troubleshooters has to be
transferred into a model for the system by using a
knowledge acquisition tool (KAT). The Fault Detection
(FD) subsystem indicates which are the cells with
problems and the kind of problem. The Troubleshooting

Fig.1. Manual troubleshooting

Fig.2. Automated troubleshooting

Troubleticket

Statistics

Fix HW problem
(and close ticket)

Fix parameter
related problems
(and close ticket)

Field engineer's
daily plan

Alarms

Radio Network System

Proactive fault managements team
� Looking into statistics / performance
� Receiving top-10 worst cells

Reactive fault managements team
� Handling alarms

Field engineers

Technical support
� Customer complaints

�����

User Observations

Target cell

� ���

Expert Knowledge

Action

Troubleticket

Statistics

Planning data

Cause

Alarms

Tool (TST) chooses the proper model and makes the
reasoning based on user observations (e.g. antenna
down tilt), configuration data (e.g. frequency reuse
setup), statistics from databases (e.g. measured
interference levels) and hardware alarms. The output of
the troubleshooting tool is a list of possible causes with
a probability associated to each cause. The tool also
recommends the most cost efficient action to solve the
problem. E.g. even if a HW problem is a more probable
than a configuration problem, the troubleshooting tool
will recommend to change a parameter or to reset the
equipment before sending someone to the site in order
to check if there is a HW problem. This is due to the
fact that the first option is less expensive (time/cost)
than sending someone to the site.

3. Bayesian Networks

An expert system simulates the human way of reasoning
to infer conclusions from some available information.
The automated troubleshooting tool is a decision
support system, which is an expert system that rather
than trying to completely replace experts, provides
support for both experienced and less experienced
personnel. Several expert systems techniques have been
developed over the last decades, the simpler one being
rule-based expert systems [2].

The chosen technique for troubleshooting mobile
networks has been Bayesian networks [3], which has
several advantages when compared to rule-based
systems. Bayesian networks are probabilistic
representations for uncertain relations, which have been
successfully applied to real-world problems, as
diagnosis of medical diseases [4] and troubleshooting of
printers [5].

In a Bayesian network, the domain is modelled by
means of nodes or variables connected with arrows,
which represent causal relations between the nodes. The
variables can be continuous or discrete, having a
number of exclusive states. Probabilities are
incorporated to the model as the "strength" of the
connecting arrows.

One important advantage of Bayesian networks is that it
has been proved that they are superior to other
techniques when dealing with uncertainty within
domains. Troubleshooting is an area in which Bayesian
networks fit perfectly, as the relation between possible
causes of problems and their corresponding symptoms
are not deterministic.

There are known algorithms to efficiently infer
knowledge from evidences, i.e. knowing the state of
some variables, obtaining the probability of each state
of other unobserved variables. In that way, knowing
some symptoms of a given disease or cause of problems
in a mobile network, it is possible to deduce the
probability of the possible diseases or causes.

A bottleneck in Bayesian networks is knowledge
acquisition, i.e. converting the domain knowledge of

experts into Bayesian models. The structure of the
Bayesian network must be defined, i.e. the relations
between the nodes, and even if some simplifications are
made about the structure, still the number of
probabilities that has to be specified is usually high.
Furthermore, experts in troubleshooting normally do not
know how to build a Bayesian model directly. The
results of the automated troubleshooting tool depend on
how well it was "taught" by the experts. Therefore,
having a semi-automated knowledge acquisition tool to
help the user seems to be an essential requirement.

Another key aspect of Bayesian networks is that they
can learn from experience, e.g. from a database with
previous cases, and continuously adapt to changes in the
domain. In that case, it is not needed that experts
specify all probabilities with a high accuracy.

4. Models for mobile networks

A Bayesian model that can be applied to diagnosis in
mobile networks is shown in Fig.3. It consists of three
types of nodes:

� Causes: they represent the possible faults that may
be causing problems in the network (e.g. HW problem,
interference in downlink, etc.)
� Symptoms: they represent manifestations of the
causes (e.g. signal level decreased, increase number of
HOs, etc.)
� Conditions: they represent factors that can have an
impact on the causes (e.g. cell density: load problems
are more likely in densely populated) or on some
symptoms (e.g. the average number of HOs is also
different depending on the cell density)

In the example in Fig.3 there are two conditions
(Frequency reuse, Cell density), which have an impact
on the causes (Interference in DL, Coverage) and on
some symptoms (Downlink Quality HOs, Uplink
Quality HOs). Furthermore, some symptoms may be
combination of other symptoms (e.g. Downlink or
Uplink Quality HOs).

Once the structure of the model is defined, the states of
the nodes should be specified and the probability tables
should be filled in. When a node has several parents this
becomes a cumbersome task because probabilities for
each combination of the parent nodes have to be set. In

Fig.3. Example of Bayesian network for troubleshooting

Interference
in DL

Coverage

Interference
level RX level

Freq.reuse Cell density

Interference
HO

 DL Quality
HO

 DL or UL
Quality HO

 UL Quality
HO

order to simplify the knowledge acquisition two models
are proposed, which consider some assumptions in
order to reduce the size of the probability tables: naïve
model and causal independence models.

The naïve model shown in Fig. 4 has been extensively
used in many diagnostic systems. When this model was
used in the medical domain, the parent node represented
a set of alternative diseases and the children were
potential symptoms of the diseases. In the case of
troubleshooting mobile networks, the parent stands for
the possible causes of problems in the network, whereas
the children are the symptoms and conditions. The
naïve model has some implicit restrictions: first, single
fault assumption, i.e. it supposes that only one cause is
present at the same time and, second, the children
(symptoms and conditions) are considered to be
independent given that the cause is known.

Causal Independence models overcome the limitations
of the naïve model [6]. One particular model is Noisy-
OR [7], which assumes that each cause Ci will bring
about a related symptom Si to happen unless an
"inhibitor" prevents it. While Noisy-Or requires that the
causes and symptoms are binary variables, other causal
independence models (e.h. Noisy-MAX, Noisy-ADD,
etc.) allows any number of states.

The use of causal independence leads to simplifications
in probability assessment and inference. For example, in
Fig.5, if the probability table of symptom S is built
using causal independence assumptions, the number of
probabilities to be assessed is linear in relation to the
number of parents, instead of exponential.

5. Troubleshooting Tool

An automated troubleshooting tool (TST) has been
developed in order to validate the previous concepts.
The tool reasons in order to diagnose the cause of the
problem(s) in the network, e.g. high number of dropped
calls. The conclusions of the TST are based on the
following data, which should be introduced to the
system before starting the automated troubleshooting:

� Fault cases, e.g. congestion, high drop call-rate, etc.,
which determines the Bayesian model to use.

� Cells to be analysed (e.g. top-10 bad performing
cells according to statistics collected). Normally this
will be automatically fed by the Fault Detection system.
� Dates of the analysis together with the averaging
method used to calculate the performance statistics
(busy hour, 24 hours data…).

When the previous information is entered into the tool
(Fig.6), the user will be asked those data that cannot be
automatically collected from the data sources (e.g.
weather condition, cell density…).

Next step is to run the analysis or schedule it, for
example run TST during early hours of the morning so
that analysis is ready when engineers come in the
morning.

During the analysis the TST collects data from all
sources specified in the model (databases, alarms, etc.).
When the data collection finishes, the TST performs the
reasoning, based on the selected Bayesian model, and
using an inference engine to calculate the probability of
each possible cause being the one causing the
problem(s).

The conclusions of the troubleshooting tool are
displayed when the analysis is finished (Fig.7). The
TST presents, for each cell, the list of possible causes of
the problem ranked by their efficiency (function of the
probability and the cost of the action required to solve
the problem).

Fig.6. Selection of Target Cells and Dates Options

Fig.5. Bayes model where causal independence can
be applied to build the probability table of node SFig.4. Naïve Bayes model

S

C2 C3 C4 C5C1Causes

Symptom1 Symptom2 Condition1 ConditionM… …

All the collected evidence related to symptoms can be
displayed or saved locally in text format. The user can
also save his own feedback on the problem cause
together with the results of the analysis. This
information can be utilised by the expert trouble-shooter
to verify if the solution provided by the tool was the
right one.

6. Knowledge Acquisition Tool

The performance of the troubleshooting tool will
depend on the knowledge of the system, i.e. the
knowledge of the troubleshooter experts should be
precisely transferred to the tool in the shape of Bayesian
networks. Normally a knowledge engineer is required to
convert the knowledge of the expert into Bayesian
models, which should include determining the
important variables to consider, states of these
variables, relations among the variables, probabilities,
etc.

The Knowledge Acquisition Tool (KAT) plays the role
of a knowledge engineer by guiding the troubleshooter
in creating the network. In order to simplify the
knowledge acquisition, some assumptions about the
structure of the model are considered (see models
proposed in section 4). These assumptions will allow
the user to insert a minimal quantity of information that
later on will be used by KAT as a seed to automatically
complete all the information needed to build the
Bayesian network.

 The steps for the creation of a network are:

� Definition of causes, symptoms, conditions and
actions. They can be reused in different networks. In the
case of symptoms and conditions the user has to
establish which script (e.g. look up in a database) will
be used to collect the data. KAT provides a wide range
of scripts grouped by category e.g handovers,
interference, congestion, etc.
� Selection of a fault case e.g high drop call rate, and
situations that can cause it e.g. Abis problems, bad
coverage, etc.
� Selection of symptoms and conditions for each
cause in the model.

� Specification of probabilities for causes, symptoms
and conditions, including probability of each link
among them (conditional probabilities).

KAT will guide the expert through the previous steps
and will inform him if there are any inconsistencies in
the data (Fig.8). Based on the previous information,
KAT will automatically create a Bayesian model (naïve
or conditional independence model) that will be used by
the Troubleshooting Tool.

When dealing with troubleshooting experts, it has been
realised that specifying probabilities for a given
structure is quite difficult and different experts can
provide completely different values, which can lead to
inaccurate results. Normally, operators have system
databases containing the history of most variables in the
network, which can be used to train the Bayesian
network and obtain the probabilities based on those
previous cases.

7. Results

The development of TST has been carried out in co-
operation with an operator. Testing the accuracy of the
model, features of Bayesian networks and the
functionalities of the prototype have been performed
within a real network environment. There was direct
input from expert troubleshooters into the development
for both the modelling and the tools functionalities. The
fault scenario selected for testing and modelling is built
upon troubleshooting cells having high drop call rate.
Accuracy and hitrate of solutions are determined from
performing manual troubleshooting and comparing with
results from TST for the same cells and conditions
affecting those cells. An iterative approach to improving
the accuracy and hitrate was regarded suitable: the main
improvements in the TST hitrate have come from direct
fine tuning of the model by the expert troubleshooters.

The TST's performance was derived from recorded
cases where the manual analysis was performed and a
solution for the majority of the problem cases found.
There existed cases where commonly, site resets were

Fig.7. Results of the analysis

Fig.8. KAT main window

performed to alleviate the problem and this rendered in-
depth investigation impossible as normal service was
resumed. The other problem cases were fed into TST
and its results stored for analysis and comparison. The
resulting hitrate as shown in Figure 9 shows
performance %'s over two separate periods, a few
weeks apart during testing in 2001.

The results showed that in first tests the output was
often a false diagnosis, but the correct cause usually
scored quite well, and the highest ranked cause usually
made some sense based on the inputs. We also observed
that the domain expert could make little changes based
on the first trials to make the diagnosis output much
more accurate. In a few weeks we got a "hitrate" of
around 60-70% on the top-ranked cause.

8. Conclusions and future

This paper presented an application for automated
troubleshooting of mobile networks based on Bayesian
networks. Appropriate models for the domain were
found after an iterative process of interaction with
troubleshooting experts. Troubleshooting based on
Bayesian networks was proven to be much more
efficient than troubleshooting based on rules, due to the
intrinsic capacity of Bayesian network of dealing with
uncertainty.

A knowledge acquisition tool has also been developed,
which helps troubleshooting experts to convert their
knowledge into Bayesian models. It has proven to be
very useful when dealing with experts in existing
operators' networks.

Trials have been carried out in real networks, showing
promising results. The obtained hit rate is similar to the
one obtained if experts manually diagnose the problems.
Moreover, the response time of the tool is much less
than the time required by a human expert. Trials are still
ongoing, fine tuning the model when new cases are
analysed. The performance improvement is quite high
every time the model is modified, which makes us think
that even better results will be obtained in the future.

Furthermore, there are future research areas that will
contribute to further improve the results. Learning will
make the model not so much dependent on the experts'
accuracy and will lift the workload associated to create
and tune the models. Another research area is related to
discretization of continuous variables, i.e. defining the
adequate number of states and thresholds for each state
of a symptom that is continuous by nature.

9. Acknowledgements

This work has been performed as part of the co-
operation agreement between Nokia and the University
of Malaga. This agreement is partially supported by the
Program to promote technical research (Programa de
Fomento de la Investigación Técnica, PROFIT) of the
Spanish Ministry of Science and Technology.

The authors would like to thank Orange and
Sonofon for fruitful discussions and feedback. We also
would like to thank Dr.Finn Jensen at University of
Aalborg for his valuable advice.

References

[1] Halonen, T., J.Melero, J.Romero, GSM, GPRS &
EDGE Performance: Evolution towards 3G UMTS
(Wiley, 2002)
[2] Russel, S., P.Norvig. Artificial Intelligence - a
modern approach (Prentice Hall, 1995)
[3] Jensen F., Bayesian networks and decision graphs
(Springer, 2001)
[4] J.E.Desmedt (Ed.), Computer-Aided
Electromyograpgy and Expert Systems (Elsevier
Science Publishers, Amsterdam 1990)
[5] Heckerman, D., J.Breese, and K.Rommelse.
Decision-theoretic troubleshooting. Communication of
the ACM, 1995, 38 (3), 49-56
[6] Heckerman, D., J.Breese. Causal Independence for
probability assessment and interference using Bayesian
Networks, IEEE, Systems, Man, and Cybernetics, 1995
[7] Kim, J., and J.Pearl. A computational model for
casual and diagnostic reasoning in inference engines. 8th

International Joint Conference on Artificial
Intelligence, 1983, 190-193

Fig.9. TST hit rate

���
���
���

�

� �
	
�

��
��
������������� �����
��
��
������������� � ���
��
��
������������� � ���

��
��
���"!#�$�&%����'!
(*),+�- �.�0/ � �����
�1!
2$��- !
23��
4���

� !
�5��!
�76 �
�4- 85�9+4��6 �
��- ��!�);:<�'6 ��- =$6 �>��
��
��� ?�+�- �.�0/ ����� �
	 - @A��6 BC��
��
���>),+�- �.�0/ � ��� �

D,E�F

