
Experiences in assessing product family
software architecture for evolution

 Alessandro Maccari
Nokia Research Center

P.O. Box 407
FIN – 00045 NOKIA GROUP (Finland)

+358718008000

alessandro.maccari@nokia.com

ABSTRACT
Software architecture assessments are a means to detect
architectural problems before the bulk of development work
is done. They facilitate planning of improvement activities
early in the lifecycle and allow limiting the changes on any
existing software. This is particularly beneficial when the
architecture has been planned to (or already does) support a
whole product family, or a set of products that share
common requirements, architecture, components or code.
As the family requirements evolve and new products are
added, the need to assess the evolvability of the existing
architecture is vital. I illustrate two assessment case studies
I have recently worked on in the mobile telephone software
domain: the Symbian operating system platform and the
network resource access control software system. The
former assessment has been carried out as a task within the
European project ESAPS, while the latter has been
performed solely by Nokia. By means of simple
experimental data, I show evidence of the usefulness of
architectural assessment as rated by the participating
stakeholders. Both assessments have led to the
identification of previously unknown architectural defects,
and to the consequent planning of improvement initiatives.
In both cases, stakeholders noted that a number of side
benefits, including improvement of communication and
architectural documentation, were also of considerable
importance. I illustrate the lessons we have learned, and
outline suggestions for future research and experimentation.

1. INTRODUCTION
Once the software infrastructure – operating system, programming
language, middleware, communication mechanisms etc. – has
been selected for a new product, the other parts of software
architecture are often neglected. This is particularly evident in
large organizations, where the software architect must make
decisions that are often important, technically complex, and
difficult to reverse when the development is under way.

The architect’s job is particularly challenging, since it involves a
continuous problem solving activity, which sometimes means re-
architecting: over time, architecture “ages” and weakens the
system’s capacity to incorporate new features; re-architecting
means changing the architecture to make systems easier to expand
and maintain.

Stakeholders of a system (and hence of its architecture) are people
or organizational entities who have an interest towards the
fulfillment of the system requirements. The end user is the most
visible stakeholder, and the one usually interested in functional
requirements. However, there are usually other stakeholders, who
are often interested in the fulfillment of non-functional, or quality,
requirements. Quality requirements (the so-called “–ilities”, plus
performance) are usually the most difficult ones to satisfy (and
those that become important when they are not satisfied!).
Architectural assessment is an essential part of the architecting
process, aimed to evaluate the degree of fulfillment of quality, or
non-functional, requirements.

This paper focuses on the architecture of software product
families. Product families are set of products that share
architectural properties, features, code, components, middleware
or requirements [1, 2]. The architecture of a product family must
support all the envisioned products, and, optimally, some
evolution paths that had not been initially forecast. Often, the
product roadmaps have to be changed after the initial platform
architecture is established. This justifies carrying out architectural
assessment for product family evolution.

I report on the experience from two case studies that our research
group has conducted together with Nokia Mobile Phones and
other partners. Both case studies were performed on real systems,
and had business relevance for the companies involved.

In the first one, we evaluated the suitability of the Symbian
operating system platform to support a hypothetical, future mobile
telephone product family. The second case study built on the
previous experience, and assessed the architecture of the software

system that controls access to network resources in our mobile
handsets. The former experiment was performed in co-operation
with some partners from the ITEA project ESAPS [3] and
partially funded by the European Union, while the latter was
performed and funded entirely by Nokia.

2. SOFTWARE ARCHITECTURE
ASSESSMENTS
Several existing methods – such as ATAM [4], see section 7 for
more related work – treat the assessment of software architecture
quality. Various business goals can trigger architecture assessment
activities.

• To evaluate and improve the architecture and its qualitative
attributes.

• To evaluate its conformance to a certain standard.

• To check whether certain qualitative requirements are
satisfied by the architecture.

• To identify the skills needed for implementing the system.

• To validate the partitioning for implementing the system
within a certain organization.

• To identify the risks related to a particular architecture.

An important, indirect consequence of performing assessments is
the improvement of communication between architects,
developers and other stakeholders (see Section 6 for more details
on this).

The input for assessment is the available documentation and
knowledge about the architecture. Such knowledge can be
extracted from different sources: architectural documents,
interviews with experts or reverse architecting activities [5].
Ideally, every assessment should result in a series of improvement
activities, targeted to both the architecture and its documentation.

3. APPLICATION TO PRODUCT
FAMILIES
A product family can be defined simply as a set of products that
share common requirements, architectural properties, components,
middleware, code or any other software artefact.

Ideally, product families should be planned and scoped in the very
early lifecycle phases, and the common architecture should be
designed to support all the planned products and as many
evolution paths as can be foreseen. However, such a thorough and
infallible planning practically never happens, and the case where
the architecture has to be ported to support new products (that it
was not originally designed for) happens rather frequently.

Building new products on top of an existing architecture has clear
advantages: most importantly, it allows saving architecture
development time, reusing knowledge, expertise and
documentation, and employing known development
methodologies.

However, it presents some risks as well. New requirements
coming from future products may imply modifications in the
architecture, which in some cases may be cumbersome. If the
required architectural modifications turn out to be too expensive,
it may be worth to change the architecture, or re-scope the whole
product family. The impact of such requirements should be

estimated as early as possible, preferably when architectural and
system-level design decisions are made. If this does not happen,
the unsuitability of the architecture for a certain product may
reveal only during development or even as late as testing phase,
thus increasing the cost of change.

This risk justifies the need to assess a product family architecture
before it evolves. The flow of assessment activities that we
followed is illustrated in Figure 1. As soon as the requirements of
the future products are known to some degree of certainty, the
stakeholders of the product (including developers, architects,
customers, domain experts, etc.) evaluate the architecture for
evolution. Together, they elaborate the evolution scenarios, which
represent the consequence of implementing requirements
introduced by new products. After the scenarios are agreed upon,
the actual assessment takes place during a meeting (which usually
lasts one or two days). There, after the chief architect has given an
overview of the architecture, the evolution scenarios are walked
through sequentially. The meeting participants brainstorm and
discuss about the capability of the architecture to support every
depicted evolution scenario. Finally, the assessment co-
coordinator writes a report that lists and elaborates all issues,
identified architectural defects or shortcomings as well as
improvement ideas. This should constitute input for re-
architecting and re-documentation.

 Create
initial scenarios

Refine
scenarios

Rank
scenarios

Overview
architecture

Evaluate

Report

Create
initial scenarios

Refine
scenarios

Rank
scenarios

Overview
architecture

Evaluate

Report

Figure 1. Architectural assessment activities.

I hereby focus on the experience gained from our two case
studies, with attention to social and organizational issues. I
produce some empirical evidence on the usefulness of
architectural assessments, based on simple error detection
statistics, and illustrate the experience as evinced from interviews
with the participants. Finally, I outline some issues for future
research in this field.

4. CASE STUDY 1: SYMBIAN OS
PLATFORM
The first assessment experiment I describe was carried on the
Symbian operating system platform. This work was carried out as
part of the EU-project ESAPS [3] and hence in a slightly different
way than a company-specific, business-critical assessment. The
case study was performed partly as a validation experiment for the
product family architecture assessment method that had been
previously devised in the project, and partly as an exercise for the
project team to become familiar with the new method.

4.1 Background
The Symbian operating system [6] was originally developed by
Psion as a lightweight, window-based operating system for
portable devices equipped with full, PC-like keyboard and a large,
graphical display. The operating system was a natural candidate to
be employed in mobile telephones that include PDA functions. At
the moment, several commercially available products (such as the
Ericsson R380S or the Nokia 9210 Communicator) run the
Symbian platform.

At the time of the experiment, Symbian had only been used as an
operating system for personal digital assistant (PDA) products,
and on mobile telephones derived from the same concept. The
companies that participated the assessment needed to assess
whether the Symbian platform could be used to support a full
mobile handset product family. This would include at least the
following product categories.

• Basic phones. These products should include only the
essential features and be sold at a cheap price (which, among
other things, implies a low-frequency processor and little
memory); basic phones provide the most important
communication-related applications, but only reduced input
(usually, a telephone keypad plus a number of function keys)
and output devices (a small-sized, low-resolution display).

• Communicators. They combine a mobile phone with a PDA.
The most common communicator concept features a dual
input/output mechanism: an ordinary mobile phone keypad
and display that handles communications functionality, and
an extended, laptop-PC-like keyboard with a large, high-
resolution graphical display for PDA functionality.

• Smart phones. This rather new concept is an evolution of the
basic mobile phone. The typical smart phone has a medium-
size, high-resolution screen, a reduced keypad aided by
different, co-existing input mechanisms (e.g. touch screen,
pen, voice, keypad, mouse).

• Web pads, or pocket web browsers. Web pads are similar to
smart phones, e.g. they also support different input devices
(such as wireless mouse, pen, voice recognition, eyeball
movement). There is a difference in flavor between
smartphones and web pads: the former are mainly conceived
to be used as telephones, with additional functionality such
as multimedia or wireless internet connection; the latter, on
the other hand, are specially made for web navigation,
although they do support basic telephony functionality and
may run selected office applications.

Given the relative novelty of the problem, it was decided to
perform the assessment as a joint effort between two mobile
phone manufacturers (Nokia and Ericsson), an academic
institution (University of Karlskrona in Ronneby, nowadays called
Blekinge Institute of Technology) and the platform developer
(Symbian).

This was possible since the first three partners were taking part in
the same EU-ITEA project, which partially funded the activity.
The organization responsible for the development of the operating
system platform (Symbian) had an obvious interest in
participating, justified by the possibility of gathering improvement
ideas.

It was thought that joining forces might help all participants
understand the domain and correct the inevitable mistakes due to
general inexperience in assessments. Cross-inspections of the
assessment material (architectural models, assessment scenarios,
etc.) were held before the assessment meeting.

4.2 Activities
All partners except for Symbian independently collected the
relevant evolution scenarios. After internal reviews, they were
submitted to the other partners for inspection. This happened a
few weeks before the assessment meeting, allowing time for
corrections. The inspection helped clarify ambiguous scenarios
and remove duplicate or irrelevant ones.

Subsequently, the scenarios were merged into a single list,
categorized according to the focus area and prioritized in
decreasing importance order. This was the chosen walkthrough
order for the assessment meeting, and ensured that a possible lack
of time would not leave out the most critical scenarios.

The assessment meeting took place in April 2000 and lasted one
day. It was performed according to the process depicted in Figure
1.

The assessment report was circulated among the experiment
participants and other partners in the ESAPS project for
inspection. Once approved, it was published as a consortium-wide
deliverable for the ESAPS project.

4.3 Results
The assessment was regarded unanimously as a positive
experience. The report highlighted three major architectural
shortcomings, along with a high number of positive evaluations.
The defects were reported to the developing organization, which
started corresponding improvement activities. From this I infer
that the assessment was successful also business-wise, in that it
led to the isolation of significant problems in the architecture, and
to allocation of effort for their solution.

All experiment participants valued the knowledge they had
acquired during the experience as useful. The participants from
the industry partners were also positive about the possibility of
performing a second internal assessment, which would build on
this experience, adding details on the implementation that could
not be revealed in the presence of competitors and externals. In
Nokia’s case, a follow-up assessment did take place on the wake
of the first one. This constitutes more evidence that the experience
provided useful insight and a basis for similar initiatives.

5. CASE STUDY 2: NETWORK
RESOURCE ACCESS CONTROL
The Symbian operating system case study was our first experience
of architectural assessment for product family evolution. We
exploited the knowledge acquired during that experience and
started an architectural assessment initiative that is still ongoing.
One of the first case studies has been the network resource access
control software system.

5.1 Background
Applications in a cellular phone need to access different network
resources, which correspond to different ways of carrying data
over the air (bearers). Examples of network resources are: voice,
SMS (Short Messaging Service), CSD (Circuit Switched Data,

used e.g. for modem dial-up connections), etc. Recently, a new
protocol (called GPRS – General Packet Radio Service, []) was
introduced in wireless networks and (obviously) also in mobile
handsets. GPRS allows data transmission over the air on a packet-
switched connection. This is advantageous for the end user, who
is billed proportionally to the amount of transferred data (as
opposed to connection time, which is the case for CSD), but also
for the operator, who can share data channels between different
users, optimizing the usage of air space in congested networks.

The introduction of the GPRS bearer increased the number of
constraints on the simultaneous usage of different bearers by
applications. Such constraints are largely dictated by network
standards (which vary according to the network type), but may
also originate from architectural choices done by the
manufacturer, usually for the sake of simpler design, higher
usability or better maintainability.

An example of such constraints may be the mutual exclusion of
two applications (e.g. WAP browsing over CSD and voice call).
In some cases, however, constraints are not as simple as mutual
exclusion: there are examples of applications that may or may not
run simultaneously, depending on the status of a third application.
Moreover, there could be constraints on the simultaneous running
of certain applications, regardless of the bearers they use. Also,
interruption rules and priorities may change dynamically,
according to factors such as network connectivity (GPRS has
three network modes), quality of service, user preferences.

Such interaction complexity brought up the (previously hidden)
problem of resource access control. The term “resource” may be
interpreted as a synonym for “network resource”, or, more
generally, as “connectivity resource”, which includes e.g. local
infrared connectivity. The system must ensure that the
applications use the (network or connectivity) resources fairly,
avoiding conflicts or deadlocks and handling errors and timeouts
in a safe and reliable way.

In order to solve this problem we devised a control system that
monitors the requests coming from applications to access the
resources, handling all possible conflicts. When we started the
assessment, most of the system software had not yet been written.
In this context, the first goal of the assessment was to improve the
quality of the existing architecture. We trusted this would allow us
to identify potential problems and weaknesses of the current
design, requirements that had been overlooked and general
architectural issues.

Secondly, we wanted to reuse the solution that had been designed
for the lead GPRS product in other products (belonging to the
same family) that would support different combinations of bearers
and applications. Hence the second goal of this assessment: to
evaluate the scalability of the existing architecture to support new
requirements (and the different constraints they involve). For
instance, new bearers such as Bluetooth were in the roadmaps
when the assessment was performed (Bluetooth-compatible
products have already been announced at the time of writing), and
possible architectural shortcomings needed to be pinpointed
rapidly.

5.2 Activities
Due to the dual nature of the requirements, the collected scenarios
were divided into two main categories: those referring to the lead
product implementation (scenarios for architectural improvement)

and those referring to the future products (scenarios for
architectural evolution). Obviously, the scenarios for
improvement got higher priority than those for evolution, since
the bulk of the implementation work was to start very shortly after
the assessment.

The process for the assessment preparation and meeting was
similar to the one we followed during the Symbian case study.
Naturally, the scenario elicitation did not take place in a
distributed fashion (as was the case in the first experiment), and
therefore took less time and fewer inspections and interactions.
Also, the facilitators were more familiar with both the assessment
practice and the architecture than in the previous case. However,
none of the other stakeholders had any previous assessment
experience, therefore some of the activities were not performed
with the ideal effectiveness.

The assessment participants were the network access control
software architect, the chief architect for the mobile phone
software, two software developers, two network protocol
requirements experts (who proved to be very useful when
discussing details about the connections), two researchers and one
requirement manager for future products. A few other people gave
contributions to the scenario collection phase, but were not
physically present in the assessment.

After the meeting, the facilitators produced a report that was
inspected by the assessment participants, as well as by other
stakeholders who could not make the meeting. After some minor
modifications it was approved, and became part of the
architectural documentation. In particular, the main architectural
defects that had been identified in the assessment were transcribed
in the “open items” section of the architectural document, and led
to the start of architectural improvement actions. This constitutes
evidence for the effectiveness of the assessment.

5.3 Results
Three architectural shortcomings were identified during the
network resource access control assessment. One of them related
to the current implementation, while two others related to the
evolution requirements. The product family architecture has
already been improved according to the recommendations that
sprung from the assessment.

As in the Symbian case, all participants judged the experience
positively, especially from the learning perspective. Feelings were
mixed about whether architectural assessment would be the most
efficient way to find errors: several people remarked that the
preparatory activities took a considerable amount of time. I feel
this may be due to the general lack of assessment experience.

The chief architect also noted that the assessment could have
produced comparable (albeit not as detailed or motivated) results
without involving such a large and diversified community of
stakeholders. I believe that this remark should be interpreted in
the context of a large organization that is constantly subject to
extreme schedule pressure.

In fact, a few months after the experiment, a researcher in my
team conducted a series of informal interviews with the
stakeholders. In that occasion, the chief architect initially restated
doubts about the efficiency of the assessment activity, but later
conceded that having such a large group allowed very detailed
analysis of the architectural shortcomings and hotspots that had
been previously identified. The architect claimed that such

detailed analysis had proved useful during the following
architectural improvement phases.

The chief architect also claimed that the assessment did not
require a large investment in terms of either time or money.
Therefore, he maintained that the comparison between results
obtained and the effort spent makes assessments a worthwhile
activity.

This opinion can be substantiated by a few rough metrics. The
whole experiment required approximately three months (elapsed
time). The total manpower we invested in it consisted in 15
working days for each of the facilitators, and 2 to 5 working days
for all other stakeholders (save for those who did not turn up at
the assessment meeting, whose contribution should be computed
in the order of a few hours). This adds up to approximately 50-60
person days, or no more than 3 working months. Considering that
the facilitators did not work for the business unit where the
assessment was performed, the effort spent by developers and
architect is minimal.

Nevertheless, the assessment allowed us to identify 3 architectural
defects, and over ten minor improvement items for the
architectural documentation. These rough figures more than
substantiate the opinion of the chief architect, demonstrating the
effectiveness of assessment. To the picture should be added
uncountable benefits, such as the increase in experience,
communication and knowledge.

Moreover, the numbers are likely to improve in the average case,
since all stakeholders (save for one of the facilitators) that took
part in this assessment had no previous experience of this kind of
activity. Further research is needed on this issue.

6. EXPERIENCE AND RESEARCH ISSUES
A number of interesting facts and issues have emerged from both
experiences. Unless otherwise specified, the considerations that
follow relate to (or originate from) both case studies.

6.1 Result
I collected some statistics and metrics for both case studies. The
first case study examined an operating system platform in a fairly
general fashion. Due to the presence of competing industries in
the same room, no technical details could be revealed. Some of
the stakeholder noticed that the assessment of certain scenarios
could not be performed in a detailed way because the industrial
partners were reluctant to share information about the
implementation of certain features.

During the first assessment case study we debated 12 scenarios,
out of which 3 highlighted potential problems in the operating
system platform. One of the problems was unanimously
recognized to be a potentially major weakness. During the follow-
up phase, it was deemed necessary to start some research on the
issue, a clear sign that the problem may have had a serious impact
on the software product family quality.

In the second assessment experiment we walked through 9 main
scenarios (most of which included more than one sub-scenario).
Out of those, 3 concerned requirements for the lead product
implementation and 6 were derived from forthcoming products.

Three scenarios revealed some kind of flaw in the architecture. In
all cases, the chief architect and system expert believed they could
be overcome with a relatively small effort. The assessment

showed that the design of the architecture mostly supports the
considered evolution requirements. In fact, it really turned out that
none of the changes that aimed to solve the discovered flaws
involved major effort allocation.

All the flaws that were discovered regarded dynamic system
behavior when in particular combinations of events were
considered. This shows how difficult requirements for mobile
phones are, and how effective assessments can be in highlighting
possible problematic areas.

From a critical analysis of the responses to the interviews we
performed with the stakeholders, I could extrapolate a number of
lessons learned, which I list below, distinguishing between
process and organizational issues and lessons learned.

6.2 Process and organizational issues
6.2.1 Assessments are easy to do
Assessments are reasonably easy to perform, even by
inexperienced people. In both cases, most participants were new
to the practice. Yet, both activities run on or near schedule, and
no one reported experiencing particular difficulties with any of the
steps. When asked for the reason, a number of people seemed to
indicate that the brainstorming-centered approach allows ideas to
be generated fast, while ensuring constant checking of their
validity by other participants. This aspect, however, calls for more
qualitative research before it can be validated.

6.2.2 Collaboration between competitors is possible
In the Symbian assessment case, we were faced with a somewhat
weird situation that featured competitors working together on a
platform that they used for different (competing) products, and
thus were on the border of confidentiality levels. The feeling was
that the separate scenario collection followed by cross-inspections
was the best approach. The case when competitors join efforts to
evaluate an architecture in which they all have a stake is
particularly interesting. I feel that, with all the different
standardization activities that are currently taking place, this kind
of situation will present itself more frequently. Therefore, it will
be essential to have a method that works even in these delicate
cases.

6.2.3 Disagreement must be technical
Perhaps surprisingly, all arguments during the assessments have
been settled on technical grounds. Disagreements have been about
how important a certain feature is, or how difficult it would be to
accomplish certain improvements. Developers felt they need not
defend their work during an assessment, as the goal is to
document the strengths and weaknesses of architecture.

Also, architects are generally open to criticism against the
architecture they have produced, provided that they are made duly
aware that the outcome of the assessment will help them do their
job better in the future. This proved to be particularly important in
the second case, when the direct superior of the chief architect
was present at the meeting. Management must ensure that the
right “climate” is set up before the assessment. Intentionally
avoiding some issues may mean overlooking important defects
that may become expensive to fix.

6.2.4 Collaboration is essential
The active collaboration of all stakeholders (especially the chief
software architects, but also developers, testers, etc.) in scenario

elicitation, categorization and filtering has been extremely helpful.
The participant felt that it has been an essential success (or lack
thereof) factor for the experiments. Especially for the second case
study, a few of the stakeholder complained that the scenario
classification and engineering phase had been ineffective. This
may be due to the fact that most stakeholders were familiar with
the requirements. A number of them expressed

6.2.5 Management must sponsor
Especially in large, schedule-oppressed organizations, activities
(such as assessments) that do not produce any immediately visible
benefit for the software may be regarded as low-priority.
Therefore, high-management awareness and sponsorship is
mandatory in order to get the necessary commitment and
resources from the development departments.

6.2.6 Follow-up must be ensured
A convenient way to avoid misunderstandings a posteriori has
been to make sure that all participants agree with the findings. An
assessment report that documents the common understanding was
produced in both case studies. We have found it convenient to
prioritize the issues contained in the report according to their
importance, as evaluated by both the chief architect and (when
needed) other assessment participants. In both case studies, the
report was circulated among the participants for inspection, and
went through a formal approval process, just like any other
architectural document.

Ideally, an assessment report should contain a sort of diary of the
assessment, with a focus on the major qualitative attributes of the
architecture that have emerged during the assessment. Any
shortcomings should result in some architectural improvement
activities, as has been in both our case studies [16].

We had little control over architectural improvement activities in
the first case study. However, as already mentioned, in the
resource access control case, we ensured that the assessment
would be followed up duly by adding the identified problems and
issues to the “Open Items” section of the architectural description
document.

6.2.7 Preparation is essential
The participants also felt that doing the big bulk of preparatory
work offline before the meeting helped avoid overlooking a
number of facts and scenarios that were afterwards deemed
relevant. It also gave a common understanding of the system
under assessment, and made sure that the (different) business
goals of all involved partners could be equally fulfilled.

The thorough preparation made it possible to allocated a time
range of 15 to 40 minutes to each scenario, depending mainly on
the complexity. A certain degree of flexibility was allowed during
discussion, which the participants felt helped discuss certain
problematic items with the necessary depth.

6.3 Lessons learned
The participants to both case studies were asked to list the main
benefits of architectural assessment. The majority of them listed
one or more of the following items.

6.3.1 Communication is made easier.
Participating in an assessment allowed people who normally work
in different departments to gather together and have focused
technical discussions; it helped have a common view about the

architecture in line with that of the chief architect. This is
particularly important in a community of developers located in
more sites. It also provided a technical justification to for people
to speak out loud, and point out problems clearly without fears of
compromising a career. Even though in northern Europe’s open
work environment this is not usually regarded as a major problem,
it could turn out to be a key factor when applied to different
cultures and organizations.

6.3.2 Documentation is improved.
Especially in the resource access control case, the system was not
well documented before the assessment, and there was still a
certain degree of uncertainty about the requirements and behavior
of the system. Incidentally, the assessment helped originated a few
action points for architectural documentation improvement.

6.3.3 Implementation work can be scheduled more
carefully.
Assessments give the best possible estimation (at that time) of the
amount of work needed on the architecture before implementation
can start. Imaginably, the system manager with the help of the
chief architect must continuously revise such estimation.

6.3.4 Architectural shortcomings can be identified
and corrected soon.
Naturally, this is the main benefit of assessments. The central role
of the chief architect in this task was evident in both cases,
although there were instances in which major defects were traced
thanks to other stakeholders, thus proving the effectiveness of the
brainstorming technique.

6.4 Needed improvements
A useful remark some participants made is that architectural
assessment would be easier and more efficient if good tools that
support management and categorization of scenarios, visualize the
architecture or calculate architecturally significant metrics existed.
Performing such activities manually is error-prone, and, especially
for complex architectures, sometimes impossible or just too
expensive. However, at the moment no commercially available
tool (other than word processors or spreadsheets with macros)
seems to fulfill the description.

Another aspect to be improved is the scenario collection phase,
which, the participants remarked, could have been more
systematical and better guided. I was the only person who took
part in both case studies. However, the experience and insight
acquired in the first case study helped me perform and better
guide the scenario collection phase in the second one. Hence, the
problem may only be an assertion of inexperience.

Another problem that the stakeholders noted (especially in the
second case study) concerned the roles in the assessment. When
arranging the assessment, we assigned roles to people that were as
close as possible to their real jobs. We thought this would make it
easier for them to express their opinion. However, some of the
participants pointed out that they would have been able to express
less biased opinions had they been assigned to a different role.
They also expressed concerns that, since not all stakeholders were
present, some of the responsibilities were not taken by anyone in
the meeting, and therefore some of the requirements may have
been overlooked completely.

Overall, a weird problem seemed to emerge from the fact that the
stakeholder tended to value more the so-called side benefits of
assessment (improved communication and awareness of the
architecture, better documentation, etc.) than the main one
(identification of architectural shortcomings). The problem
emerged especially in the second case study. It may partly depend
on the fact that the assessment team members had strong control
over the architecture, and therefore were aware of most
shortcomings. Instead, having the chance to gather together to
discuss technical issues for a full day does not happen often in
tight-schedule environment. The beneficial consequences of such
discussion may have been appreciated more than those of the
assessment itself.

6.5 Assessments are not all
Trivial as it may sound, I claim that, especially in an industrial
environment, stakeholders should always be made aware that
architecture description alone can guarantee neither quality nor
functionality of the final software product. Wrong design choices,
bad management, poor implementation, insufficient testing and
difficulty of communication between team members could drive
to failure, even in presence of a good architecture.

Therefore, assessments should not be limited to the early phases
of the software lifecycle. They could be devised as a regular
initiative that helps keeping the software development work up to
the customers’ and users’ expectations. Our experience in this
approach is still limited, and more experiments are needed before
its effectiveness can be proved.

7. RELATED WORK
Architectural assessments have been the subject of several
research papers.

Kazman et al. [7] describe their method for assessment, as well as
experiences from a number of case studies. Interestingly, the list
of experience issues I gathered resembles the one they published,
containing “proper (software) description level”, “enhanced
communication” and “improvement of traditional metrics” among
the main benefits of the assessment experiments they performed.

Bengtsson et al. [8] propose a method for assessing modifiability
of software architecture. While modifiability is a similar quality
attribute to evolvability, it does not explicitly concern issues such
as derivation of new products from a family architecture. Their
method is similar to the one I applied, in that it is based on
scenario elicitation and walkthrough.

Bengtsson and Bosch [9] also investigated the subject of assessing
software architecture for maintainability. The problem of
maintainability mirrors that of evolvability, and mainly concerns
large software systems that need to be evolved in small steps for a
long period of time.

In a newly published book, Clements, Kazman and Klein [10]
illustrate several methods for conducting architectural assessment.
The book has been published only a few days before writing, and
constitutes new material for me.

Kazman, Carriere and Woods [11] discuss the subject of scenario-
based software architecture analysis, with particular focus on
qualitative attributes. Their paper is the first one that proposes
scenario-based approaches for all phases of software architecture
development.

Kazman, Klein and Clements [12] have also presented an
application of their ATAM method to real-time system.

Concerning industrial applications, Ferber et al. [13] discuss the
experience they gathered from applying the ATAM method to the
automotive domain. Interestingly, this paper seems to suggest that
the most prominent results of the application of architectural
reviews is not the identification of defects, but rather the
improvement of documentation and a better understanding of the
architecture. The results of this experience seem to be in line with
mine, thus providing more evidence to the fact that “side benefits”
of assessment seem to be at least as important as the tracking of
defects.

Finally, Galal [14] proposes the application of scenario-based
techniques to software architecture development, with particular
focus on the evolutionary aspects of architecturally significant
requirements (architectonics). The theoretical approach that this
paper establishes poses the foundation for a completely new
approach to the discipline of software architecture evolution.

8. CONCLUSIONS
I described the experience gathered from two industrial case
studies of product family architecture assessment for evolution.
The two case studies differed slightly: in one case, the platform
under assessment had already been employed in a few commercial
products, while in the other the majority of the software had not
been written at the time of assessment. The first case study was a
cross-organizational, international experiment on a system of
common interest, while the second one was performed entirely
inside our organization.

Despite the differences in the setup, both experiments shared the
goal of assessing the capability of a software product family
architecture to adapt to evolution.

The fact that previously unknown architectural issues were
identified in both case studies provides an indication of the
effectiveness of the assessment practice. Comments given by
stakeholders constitute evidence of other important side benefits
of architectural assessment and point to a number of
improvements in the methodology, which is still incomplete and
not validated.

Following the experiences hereby described, we have started an
architectural assessment initiative inside Nokia that we intend to
continue in the future. We plan to gather more experimental data
and perform additional research on the topic, with the aid of
various research approaches. This way, we aim to contribute to
the validation of the assessment practice in the context of a multi-
site, industrial organization that develops large, complex systems.

9. ACKNOWLEDGMENTS
Thanks to the ESAPS project team (in particular to Tapio
Tallgren) that took part in the first case study, and to Stefan
Baggström, Andy Turner and Christian Del Rosso for the
invaluable help, funding and support with the second one. Thanks
to Anne Volmari and especially to Jan Bosch for the hard review
work and good advice for this paper. The work behind the first
case study has been part of the Eureka Σ!2023 Programme, ITEA
(project 99005, ESAPS), while part of the research work
connected to the second case study has been part of the Eureka
Σ!2023 Programme, ITEA (ip00004, CAFÉ [15]).

10. REFERENCES
[1] Bosch, J. Design and Use of Software Architectures.

Addison-Wesley, 2000.

[2] Jazayeri, M., van der Linden, F., and Ran, A. (eds.), Software
Architecture for Product Families. Addison-Wesley, 2000.

[3] ESAPS project official web site. http://www.esi.es/esaps/

[4] Kazman, R., Klein, M., Clements, P. ATAM: A Method for
Architecture Evaluation. Technical Report CMU/SEI-2000-
TR-004, Software Engineering Institute, Pittsburgh, PA,
2000.

[5] Riva C. Reverse Architecting: an Industrial Experience
Report, in Proceedings of the 7th Working Conference on
Reverse Engineering WCRE2000 (Brisbane, AUS,
November, 2000).

[6] Symbian technology web page.
http://www.symbian.com/technology/technology.html.

[7] Kazman, R., Abowd, G., and Bass, L. Scenario-Based
Analysis of Software Architecture, in IEEE Software
(November 1996), pp. 47-55.

[8] Bengtsson, P.O., Lassing, N., Bosch, J., van Vliet, H.,
Analyzing Software Architectures for Modifiability,
Blekinge Institute of Technology Research Report 2000:11,
ISSN: 1103-1581.

[9] Bengtsson, P.O., and Bosch, J., Assessing Optimal Software
Architecture Maintainability, Proceedings of the fifth

European Conference on Software Maintainability and
Reengineering, September 2000.

[10] Clements, P., Kazman, R., Klein, M., Evaluating Software
Architectures: Methods and Case Studies, Addison-Wesley,
2001.

[11] Kazman, R., Carriere, S. J., Woods, S. G., Toward a
Discipline of Scenario-Based Architectural Engineering,
Annals of Software Engineering, Vol. 9, 5-33, 2000.

[12] Kazman, R., Klein, M., Clements, P., Evaluating Software
Architectures for Real-Time Systems, Annals of Software
Engineering, Vol. 7, 1999, 71-93.

[13] Ferber, S., Heidl, P., Lutz, P., Reviewing Product Line
Architectures: Experience Report of ATAM in an
Automotive Context, the Third International Workshop on
Product Family Engineering, Bilbao, Spain, October 2001.

[14] Galal, G. H., Scenario-Based Software Architecting. In: I.
Borne, S. Demeyer, & G. Galal (Eds.), 13th European
Conference on Object-Oriented Programming: ECOOP'99,
13-18 June 1999. Workshop W4: Object-Oriented
Architectural Evolution. Lisbon, Portugal. LNCS 1743: 68.

[15] CAFÉ, http://www.itea-office.org/projects/cafe_fact.html

[16] Booch, G., Conducting a software architecture assessment,
Rational white paper, see
http://www.rational.com/products/whitepapers/391.jsp

