
1

Introducing the Software Architectonic Viewpoint

Alessandro Maccari1, Galal H. Galal1,2
1: Software Architecture Group, Nokia Research Center, P. O. Box 407, FIN – 00045 NOKIA
GROUP
2: School of Informatics and Multimedia Technology, University of North London, 166-220
Holloway Road, London N7 8DB.

Abstract: Managing evolution of complex software architecture is a continuous
challenge in industry. Systems such as mobile handsets undergo a continuous
increase in complexity, while the fast market evolution imposes quick
integration of new features. Being able to easily manage software architecture
evolution is the basis for shorter time-to-market and faster product release. The
term “viewpoint” has become familiar with the publication of the IEEE
standard 1471-2000 on recommended practices for architectural modelling.
Based on the classical 4+1 view model, we have elaborated our own set of
viewpoints in order to support our domain-specific architectural modelling
needs. We hereby justify the introduction of the architectonic viewpoint,
which models the evolutionary aspects of software architecture. The term, as
well as the rationale behind it, is inspired from architecture as in buildings. We
describe the viewpoint and the way it links to the others we use. Additionally,
we briefly elaborate on the other viewpoints that we use for architectural
modelling of mobile telephone software architecture. We provide basis for
discussion and further research into the matter.

Keywords: software architectonics, architectural evolution, the architectonic viewpoint,
architectural viewpoints.

1. INTRODUCTION

A large proportion of the software development work for systems such as
mobile phones consists of maintenance and evolution of complex
architectures and integration of new features in existing systems at market

2 Alessandro Maccari & Galal H. Galal

speed. Proper architectural modelling plays an essential role in such tasks:
well-structured and exhaustive architectural documentation is a key aid for
successful management of the evolution of the software architecture and the
roadmapping of system features.

Architectural modelling based on different views has been used for a
long time. The milestone of the discipline was set back in 1995 by Philippe
Kruchten’s paper on the 4+1 view model [Kruchten]. While proposing some
improvement and extensions, we believe that the core of the model is still
valid, and will refer to it throughout this paper. A summary of the viewpoints
that we use appears in section 2.

We believe that the viewpoints thereby described, and the views
extracted from them, provide a fairly good static description of software
architecture. However, when it comes to managing evolution, it can be very
hard to extrapolate the necessary information from static views.

A workshop recently held with the ECOOP conference
[ECOOPworkshop] focused on architectural evolution. Its participants
debated how to model architecture so to be able to manage and, in theory,
also predict evolution. (Clearly, accurate predictions of the evolution of
software, and of any other system for that matter, is impossible; however, the
discussion produced interesting hints to identify the parts of the system that
are more likely to evolve over time, as opposed to those that will hardly
change during the system’s future life.) Motivated by the conclusions
thereby reached, we present the idea of an architectonics viewpoint, which
classifies software components according to their relative stability
characteristics into different layers that have different likelihood and scales
of change. The architectonic viewpoint is the focus of this paper, and
concerns the evolutionary aspect of software architecture. The architectonic
viewpoint advocates the organisation of software into layers that share
similar likelihood of change, thus localising the need to propagate changes
and minimising the disturbance to other layers that need not be disturbed. It
is justified in section 5 and described in section 0.

Additionally, we present three other viewpoints that we regularly use
(section 7). Telecom systems, and mobile handsets in particular, have
complex runtime behaviour due to events from the environment and the
mobility of the devices. Understanding such behaviour (at both user and
operating system level) is crucial for writing effective test cases, and this is
the reason why we propose the dynamic view and task view.

Finally, we introduce the notion of the organizational view, which
models the structure of the developing organization. While this view is
trivial in most cases, when working in large, multi-site organizations such as
Nokia it becomes crucial.

Introducing the Software Architectonic Viewpoint 3

We conclude the paper with a list of topics for validation and further
research, and locate this work within the context of previous research.

2. OUR BASIC VIEWPOINT SET

We have elaborated the 4+1 view model to fit the specific needs posed by
real-time, embedded telecom systems, such as mobile telephones. We
presented our flavour of the model [Riva] during a workshop at the last ICSE
conference [ICSEworkshop]. In brief, we model architectures by means of
four basic viewpoints, resulting in the following views:
a) Requirements view (which includes a domain model and a requirements

model, mainly in the form of use cases);
b) Conceptual view (made of architecturally significant entities, stereotypes,

constraints and interaction patterns);
c) Logical view (major logical components and relevant provide service/

require service relationships between them);
d) Implementation view (source code or target modules that implement the

logical view elements).
Our model does not include a deployment view (yet), since it has proved

to be rather trivial in the case of our mobile handset software architecture.
The main improvements with respect to the original model are:

a) The Requirements view contains not only use cases (engineered
functional requirements) but also non-functional requirements and, most
importantly, a domain model [Jackson], which we find of invaluable help
in modelling the reality and the problem domain;

b) The Conceptual view, containing architecturally significant constraints
and patterns, is not explicitly present in Kruchten’s model (we believe
it’s meant to be implicit in the logical view, although the author is the
best person to ask!).
We briefly elaborate on the requirements and conceptual views in

sections 3 and 4 respectively.
In addition to these basic four viewpoints, we introduce others that we

have found useful for our purposes.
The runtime viewpoint deals with the user-visible behaviour of the

system. We assert that such behaviour cannot be effectively modelled by
means of use cases or any other traditional requirements modelling
technique. We elaborate on this topic in section 7.1.

The task viewpoint has to do with operating system task allocation. It is
discussed in section 7.2.

4 Alessandro Maccari & Galal H. Galal

The organizational viewpoint models the organization that develops a
certain software system, together with the dependencies between the
different teams and units. It is briefly elaborated in section 7.3.

3. REQUIREMENTS VIEW

In the 4+1 view model, the “+1” part is the one about requirements, and
contains only functional requirements expressed in terms of use cases. The
use cases provide the “glue” between the other views, in that they model the
business reasons for a certain system to be built. However, we advocate that
it is not sufficient to model only functional requirements in order to
understand all the architectural constraints for a system.

First, qualitative requirements may have substantial consequences at the
architectural level. An example is quality of service, which in some cases is
enforced by network standards. The architecture of the protocol software is
usually influenced by quality of service, since products cannot be
commercialised if the requirement is not met.

Additionally, we believe that architecture is a solution to certain
problems. These can partly be summarized as requirements, but this is not
sufficient. A certain knowledge about the problem domain is essential in
order to devise a good solution [Jackson].

An example from the mobile phone domain is a message. Digital mobile
phones have always been capable of sending and receiving messages. Until
very recently, messages were simply made of (almost) ASCII text, up to 160
characters long. In the past two years, the usage of messages has boomed,
and Nokia has launched products that support picture messages, where a
picture can be attached to the message. In the future, with the availability of
the so-called third-generation networks, higher bandwidth will allow the
transmission of multimedia messages, which we guess will be very similar to
today’s emails and include attachments of various kinds (documents,
pictures, sounds), that can be “viewed” or “played” by certain applications.

Clearly, the concept of message is no more as simple as it used to be.
Understanding what a message is (and how it can evolve in the future, see
section 4) is crucial for architecting the messaging software in mobile
handsets. The answer to the question “what is a message?” (and to similar,
even more complicated questions, such as “what is a call?”) lies at the heart
of the domain model.

We feel that a well-defined domain model is an essential part of the
architecture, since it allows the understanding of the system’s architectonic
nature and its implications on the evolution of the software system (see
section 4).

Introducing the Software Architectonic Viewpoint 5

Therefore, our requirements view contains requirements (both functional
and qualitative) and a domain model. We usually prefer use cases
[Cockburn] as a means to model functional requirements.

It is to be noted that even with the addition of a domain model and of
qualitative requirements (the -ilities), our requirements view does not
contain any description of the system structure, and thus still qualifies to be a
“+1” view in the Kruchten sense.

4. CONCEPTUAL ARCHITECTURE VIEWPOINT

We devised the conceptual viewpoint (that infers the conceptual view)
after realising that the logical view in the 4+1 view model did not explicitly
contain a number of things:
a) the constraints on the types of components that can exist and on the

relationships between components that are allowed by the architectural
rules (usually part of the architectural style);

b) the architectural patterns (or design patterns that have been applied at the
architectural level);

c) the main system-level rules that software developers and architects must
follow when building new parts of the system (e.g. when to use a certain
type of component, architectural heuristics).
We felt that such information should be part of a view of its own. That

view contains what everyone who works with a particular software
architecture needs to know, and should be included in the basic training for
developers and, most importantly, chief designers and architects.

An example from the mobile phone domain is the Symbian [Symbian]
user interface architecture. Symbian is an operating system platform that is
targeted to high-end mobile handsets with a rich functionality and an
advanced graphical user interface. The Symbian platform is developed
independently of the target products, thus making an ideal example of a
product family software platform.

Applications are built using a flavour of the module-view-controller
design patterns, which allows an application engine to run independently of
its UI appearance. This way, an application can be adapted to different user
interface styles by rewriting only the view code, without touching the engine
code. This may sound like a requirement for application development, but
instead it has architectural implications, since all applications that run on
Symbian platforms must conform to this rule. This is a general architectural
rule, which poses constraints on all applications.

6 Alessandro Maccari & Galal H. Galal

5. THE ARCHITECTONIC VIEWPOINT

The architectonic viewpoint derives from the concept of systems and
software architectonics [Galal & Paul, Galal99, Galal2000] focuses on the
evolvability concern. The term architectonic derives from similar use of the
term in the area of building architecture [Frampton], where the term was
used to refer to lightness vs. heaviness of constructional elements. This way
of considering construction also reflects the relative ease of changing, or
transporting or adapting various elements of buildings. It aims at modelling
software systems a way that makes explicit the difference in the nature of
software components in terms of their relative likelihood of change.
However, seeking to categorise such components, perhaps arranged into
layers, rather than attempting to predict the precise nature of change, we
believe, best achieves this analysis. We turn to the Architecture discipline for
an informative analogy. In a book about how buildings learn and adapt over
time, Stewart Brand [Brand] refers to the layers of change that comprise
buildings. Brand identifies six layers in a building that change at different
rates. From the slowest to the fastest these are: Site, Structure, Skin,
Services, Space Plan, and Stuff (meaning things like furniture, decorations,
light fixtures and appliances). Figure 1below illustrates this view.

Figure 1. Shearing layers of change (courtesy of Phoenix Illustrated).

The view derived from this architectonic viewpoint is fundamentally
normative, i.e. it is based on longitudinal studies of the types of changes that

Introducing the Software Architectonic Viewpoint 7

normally affect buildings after construction and delivery to clients, as a
result of use and adaptations by their users in the western culture. Buildings
that accommodate such changes gracefully are the ones that please their
users most and remain useful for longer.

Such buildings are capable of accommodation of unforeseen uses
because the layers that make them up are loosely-coupled. These layers slip
past each other: changes to one layer do not necessitate changes to others.
Note here that the low coupling is not at the level of individual bricks and
other individual constructional elements such as doors and windows: rather,
the de-coupling referred to is at the level of categories, or layers, of such
elements.

The constructional elements are categorised according to the degree of
susceptibility to, or speed of, change that they share. The categorisation also
relates to the degree in which each layer constrains others, and to the scale of
disruption that the change in each entails.

It is important at this juncture to point out that the placement of types of
building components into particular layers is fundamentally a cultural
choice. For example, the nomad’s site is the most volatile and continuously
changing aspect of his habitat, whilst the fabric of his tent remains the same
for a long time. Frampton illustrates this by referring to a variety of
anthropological evidence, pointing out to ethnographic studies that have
demonstrated the constancy of the light vs. heavy differentiation of
constructional efforts across cultures [Frampton].

So again, we encounter a view of architecture that demarcates categories
of building blocks according to their architectonic or relative stability
characteristic, this time with the role of cultural specificity and variances
spelled out.

Our conclusion at this point is that the way in which architecture
constraints an artefact of any sort is very much dependent on the culture that
spawns it. What is heavy is more constraining than what is light. The choice
lies within the culture tradition that uses or indeed develops the building, or
in our case, software. This has been recently reflected in the writings on
Enduring Business Themes (e.g. [Fayad]) and how types of domain
constructs are implicit, essential and rely on intuition for their discovery.
Enduring Business Themes are also the most stable concepts in a given
problem domain, which to us is generated by surrounding business and
organisational cultures. There is therefore a need to give close investigative
attention to such cultural and domain-bound aspects and the choices they
spawn, and to the way in which they allow or constraint the evolution of the
software artefact.

For example, the particular Conceptual architecture view that we reported
above is also a result of cultural (and business) choices, which leads to

8 Alessandro Maccari & Galal H. Galal

certain allowances towards and certain constraints on how the software can
be feasibly evolved. In the Nokia example, therefore, the conceptual
architecture is more akin to the “site” or “structure” layer that appears in
Figure 1. This complies with the view that the aforementioned ECOOP
workshop converged upon: namely that software architecture is primarily an
expression of constraints that are often deeply embedded into the context of
the system, as it relates to both developers and consumers.

When focussing on the evolvability concerns, the view that software
architecture should be less concerned with structural elements and more with
categories of software components (in the large-grain) becomes particularly
useful. Stratifying such categories according to their relative rigidity, scale
and speed of change can help the architecting effort by making the
‘architectonic’ nature of the software artefact as whole clearer.

The layering according to change should mirror that of the domain
model. For instance, in the messaging example we quoted above, messages
are evolving from simple, text-only, short messages to rich messages with
attachments (email-like) and to multimedia messages. However, the
fundamental functional need to send SMS messages will remain for long
time (at least due to backwards compatibility). The evolution in the domain
should be mirrored in the software architecture, where the messaging
software is not likely to evolve much in the part where it handles SMS
messages. The architectonic view should uncover this mapping and separate
the core, stable parts from the ones that are likely to require future changes.

This clarity means that the impact of various architectural decisions can
be studied more carefully, and in conjunction with the relevant stakeholders.
The aim is also to support the understanding and consequent design of
systems, so that adaptability properties are maximised with respect to the
particular situation (read: culture) that we are referred to.

We refer to this view of systems as the architectonic view. We believe
that there is not much that is fundamentally new here in this type of
differentiation: the SPARC database model, modern operating systems, and
the ISO OSI reference model follow the same principle. What is new is our
reference to the way in which the specific problem domain can affect and
spawn such categorisation for each individual, substantive domain.

6. DESCRIBING THE ARCHITECTONIC
VIEWPOINT:

We provide below a description of the architectonic viewpoint according
to the precepts of the IEEE-Std-1471-2000 standard [IEEE] for the
architectural description of software systems. According to this standard, an

Introducing the Software Architectonic Viewpoint 9

architectural viewpoint is a standard or a template for constructing a view.
The architectonic viewpoint that we propose is mainly concerned with
facilitating the description of, reasoning about and communication of the
rationale underlying evolvability-centred views about the software system in
question. Below is our template, including an explanation in square brackets
where the slot heading in the template might be less than obvious. We wish
to stress at this point that the instantiation of the viewpoint into view is
fundamentally grounded in the problem domain that gives rise to the
software artefact (that aims to satisfy one of its needs). The software
architect must stop to ponder, inevitably in consultation with the
stakeholders of the domain, as to what aspects of the domain are the most
stable, thus corresponding to the idea of enduring business themes, and what
is less stable. In our view, it is not possible to do this by merely referring to
standard practice of say, isolating common areas of change like user
interface, but that the architectonic nature of the problem domain must be
investigated and in some way mapped to the software architectural layout.

6.1 The architectonic viewpoint

Ontological origin [by this we mean the essential nature of the view and
its origin, rather than the result of performing an ontological study on a
given domain of discourse]: Normative, from the study of extant software
artefacts over a significant number of instances.

Epistemological status: Contingent on relevant stakeholders consensus
that in itself is in flux and continually achieved. This makes the process for
reaching and maintaining the consensus paramount, as well as fully
recording its underlying rationale and connections to any existing contextual
analyses.

Appropriate methodology: Hermeneutic / interpretive, but also fully
grounded in available data to aid traceability, sense making and forward-
projection (possibly using a set of organisation or domain-wide change
scenarios).

Stakeholders: Developers, Maintainers, Clients and Sponsors.
Concerns: Evolvability and adaptability in the face of unplanned

changes to requirements or concrete environmental evolution scenarios.
Viewpoint: Architectonic, meaning the categoric differentiation of layers

according to any or some of the following attributes: stability, constraining
power, ease of change, likelihood of change, scale of effect, magnitude of
change. The term derives from its use in architecture (as in buildings) to
study and differentiate categories of constructional elements according to the
degree of heaviness (or lightness) of their attributes, which relates to their

10 Alessandro Maccari & Galal H. Galal

degree of permanence, symbolic value, grounding in context (physical,
business and social) and ease of change and movement (portability).

View: Layers of software (we suggest a small number; perhaps a
maximum of 6) arranged according to the degree of stability or likelihood of
change.

Known inconsistencies/ operationalisation issues:
a) there are often conflicts between the architectonic view and the

performance and validity views of real-time systems;
b) different stakeholders may adopt different architectonic views for the

same viewpoint to suit their particular positioning and aspirations.
Rationale: for numerous man-made and natural systems, and especially

that succeed in adapting to varying circumstances, it is observed that
different parts of the system change at the varying rates, scales, speeds or
costs. Examples of this are abound in biological systems: animals, forests,
eco-systems and so on.

6.2 Justification for the architectonic viewpoint

Given a certain software system, if we stratify its components into layers
according to its change-based characteristics, we observe that it is possible to
distinguish layers that are more stable than others, and perhaps last the
lifetime of the system, while others change more frequently. The intuition is
that if the stratification into layers is valid from the point of view of the
original problem domain, (i.e. there is a degree of isomorphism or
correspondence in the mapping between the architectonic nature of the
problem domain, or its environment if you will, and the architectonic view
of the software), the latter becomes significantly easier and cheaper to
maintain, and with fewer modification risks.

Fundamental to this point of view is the distinction between
constructional elements (and associated construction plans), which we do not
view as the primarily architectural, and the overall architecture that acts at a
more global level and thus includes integration with and correspondence to
the surrounding context. This view does not regard schemes that discuss
individual buildings blocks and their inter-relationships as architecture, as
these are better viewed as structural representations. Software patterns are
examples of these largely structurally-bound representations, although we
realise the debate that this view might trigger.

Introducing the Software Architectonic Viewpoint 11

7. OTHER VIEWPOINTS

We believe that the viewpoints listed in the previous sections can infer
valuable architectural views for most kinds of systems. Some other
viewpoints, however, become useful when dealing with embedded
telecommunications systems in general, and mobile handsets in particular.

The participants of the aforementioned ECOOP workshop agreed that the
number of views should be as low as possible. We hereby propose three
specific viewpoints that we find useful in our specific organization and
domain. The choice to adopt such viewpoints arises mainly from company-
specific modelling needs. Further research is needed to establish whether the
viewpoints we use would suffice also in other domains or in other
organizations working in the same domain. Also, as this section constitutes a
summary of our best practice (rather than the result of research work), we
are aware of the probable incompleteness of our viewpoint set. As usual in a
practical setting, it represents a good compromise between rigor and
practical applicability.

7.1 Dynamic (runtime) viewpoint

Use cases typically model functional requirements based on user goals
[Cockburn]. Architecturally significant functional requirements for our
mobile handset software often span through several (unrelated) user goals,
and therefore cannot be modelled with use cases. This brings up the need for
feature description models, a topic that has been overlooked in the literature.

When dealing with features, it is important to model the user-visible
behaviour of the system when seemingly unrelated features interact, for
example by means of interruption, blocking or dependency. The topic of
feature interaction has been subject of previous research [Lorentsen].

Feature interaction is present in systems, such as telecommunications
switches and mobile phones, where externally generated events and user
settings can change the way the system responds to a large number of user
stimuli. Modelling such interaction patterns is useful to generate complete
system-level test cases.

An example from the mobile phone domain is the one where an incoming
call is signalled while the user is playing a game. In this case, the game is
interrupted, so that the user can handle the incoming call (for instance, by
answering, diverting or rejecting it). In the meantime, the state of the game
must be saved, so that playing can be resumed after the incoming call
handling is terminated. This scenario has to do with two unrelated user
goals: “play a game” and “handle an incoming call”, which correspond to
two different use cases.

12 Alessandro Maccari & Galal H. Galal

The case is interesting, since an incoming call can interrupt almost all the
activities that can take place in a mobile phone, at almost all points in time.
Therefore, it is not feasible (and definitely not convenient) to model all the
combinations. Instead, modelling effort should focus on patterns of
interaction, which should be linked to the main combinations of user goals.
In the incoming call case, for instance, the interruption does not always
happen in the same way. A slightly different case is when an incoming call
interrupts an ongoing call and is put in wait. The user can choose whether to
handle the interruption or ignore it, a possibility he doesn’t have when
playing games.

In order to address this modelling need, we created a dynamic (runtime)
viewpoint, in which we model the interruption priorities and patterns, the
blocking rules and the dependencies between the various system features.

The dynamic view wherefrom inferred is all about requirements, and thus
may be included in the requirements view. We prefer to keep it separate,
since the need for this kind of view does not exist in other domains.

7.2 Task viewpoint

The view derived from the task viewpoint models the allocation of
components into operating system tasks. It constitutes part of the process
view in the 4+1 view model. We felt the need to isolate the particular
problem of task allocation because of the stringent real-time requirements
that our systems must fulfil (partly because of international standards on, for
example, maximum call establishment time). We will not elaborate any
further on the task viewpoint, as it is not the focus of this paper.

7.3 Organizational viewpoint

The organizational viewpoint models the structure of the organization
that is in charge of software development. While it is trivial in most cases,
when working in large, multi-site organizations such as Nokia it is worth
some more attention.

Conway’s law [Conway] asserts that the structure of a software system
mirrors that of the developing organization. Experience and wisdom confirm
that it holds a fair amount of truth, especially for large, multi-site
organization such as Nokia. In particular, decisions on architectural
evolution should be made while keeping in mind the organizational
boundaries, since it is usually the case that components and subsystems that
are developed in different sites are designed and architected differently, and
should be as loosely coupled as possible so as to be able to evolve
independently.

Introducing the Software Architectonic Viewpoint 13

Just like the requirements and dynamic view, the organizational view
does not model the system architecture directly, but helps understand the
context in which the system is developed.

8. CONCLUSION AND FURTHER RESEARCH

We believe that the investigation of the following issues would be very
useful for the activity of architecting software to enhance its evolution:
a) Architectonic domain modelling, which aims at producing a model of

how the problem domain in its wider sense, which also includes the
software development organisation, influence or dictate the evolution
paths of the software in question. One of the authors is currently engaged
in a UK government-funded project to carryout this work. The aim is to
explore the extent to which the architectonics of a given domain
influence or dictate the architecture of the software artefact serving it
[Addis & Galal]. Within the CAFÉ project [CAFÉ], Nokia plans to
explore several areas pertaining to architectonics for product families,
including domain modelling and assessment for architectural evolution.

b) The historical impact of legacy architecture on the ease, or otherwise, of
evolving software to accommodate new requirements. This should be
used to inform further software architecting or re-architecting decisions.

c) Investigating the impact of the organisational view and making it explicit
and subject to debate and re-organisation when necessary.

d) Seemingly, the objectives of producing and maintaining architectural
views vary between organisations. No single architectural view can
address all such objectives. At the same time, the proliferation of
architectural views is probably harmful since this can increase
complexity (thus defeating the main purpose of having architectures in
the first place: to simplify the management of complexity), as well as
increasing the opportunities for inconsistencies. This calls for a conscious
effort by the software development organisation to state its prime
objectives from having architectural representations, and prioritising
these. Thus the prioritisation and stratification of the architectural views,
perhaps as a hierarchy of constraints, to rationalise and re-organise when
necessary becomes important. Thus developing a kind of meta-
architecture framework, where the architecture of the constellation of
architectural views in an organisation is explicitly addressed, modelled
and managed.

e) It is vital to develop representations that can support reasoning and
debate about the architectonic attributes of the problem domain and the
software that aims to address it. Such representations need to be both

14 Alessandro Maccari & Galal H. Galal

open to all stakeholders and meticulously maintained and version-
managed to aid reasoning about past evolution behaviour of systems.

f) More research effort should go into studying the histories of domains and
corresponding software over a period of time. This can be the start of
global effort to classify domains, software and systems according to
aspects of architectonic behaviour and profiles. However, this is a large
research programme that requires substantial commitment and resources.

g) We asserted that the number of architectural views that are used to
describe a certain system should be as small as possible. However, in our
examples we realized it was necessary to add at least three domain-
specific viewpoints. This makes for a large number of views in the
architectural document. The research question whether there should be a
maximum limit to the number of views should be addressed. From
anecdotal evidence, it appears that the number of views depends on the
domain, but more research is needed on this point.

h) It is necessary to find out methods how the cross-effect of layers upon
each other can be investigated and brought under greater discipline.

i) Perhaps the biggest challenge concerning the architectonic viewpoint is
its practical validation. While at Nokia we have started using it in an
experimental way, several other trials are necessary before its usefulness
is proved. Ideally, such trials would come from both toy case studies (e.g.
during university courses) and from real cases, ideally extending to
different domains than ours. Early results from the study of other real-life
systems suggest the utility of the architectonic view in isolating software
components by layers that differ in their rates of change.

9. ACKNOWLEDGEMENTS

Some of the work that resulted in this paper was funded by the EU
project CAFÉ (Σ! EUREKA 2023 / ITEA - ip00004) and by the EPSRC
(Engineering and Physical Sciences Research Council, England).

10. REFERENCES

[Addis & Galal] T. Addis & G. H. Galal, Using problem-Domain and Artefact-Domain
Architectural Modelling to Understand System Evolution. 9th European Conference on
Information Systems, Bled, Slovenia June 27-29, 2001. Pp 298-303.

[Brand]: S. Brand, How buildings learn: What happens after they're built. 2nd ed. 1994,
London: Phoenix Illustrated.

[CAFÉ]: “from Concepts to Applications in System Family Engineering” (Σ! EUREKA 2023/
ITEA - ip00004), see http://www.extra.research.philips.com/euprojects/cafe/

Introducing the Software Architectonic Viewpoint 15

[Cockburn]: A. Cockburn, Structuring Use Cases with Goals, Journal of Object-Oriented

Programming, September 1997 (part 1) and November 1997 (part 2).
[Conway]: see the Free Online Dictionary of Computing:

http://burks.bton.ac.uk/burks/foldoc/18/25.htm
[ECOOPworkshop]: Fourth International Workshop on Object-Oriented Architectural

Evolution, co-located with the 15th European Conference on Object-Oriented
Programming (ECOOP 2001), Budapest, Hungary June 2001. See
http://prog.vub.ac.be/OOAE/

[Fayad]: M. Fayad Accomplishing Software Stability, Communications of The ACM, 2001
Vol. 45, No. 1, pp. 111-115.

[Frampton]: K. Frampton and J.e. Cava, Studies in Tectonic Culture - The Poetics of
Construction in Nineteenth and Twentieth Century Architecture. 1995, Cambridge,
Massachusetts: The MIT Press.

[Galal & Paul]:G. Galal, & Paul, R. J. Systems Architectonics. Mini-track on the
Philosophical Foundations of Information Systems. In W.D. Haseman & D. L. Nazareth
(Eds.) Proceedings of the Fifth Americas Conference on Information Systems (AMCIS'99)
August 13-15, 1999, University of Wisconsin-Milwaukee, Milwaukee, WI, USA. pp 627-
629

[Galal99]: G. H. Galal, On the Architectonics of Requirements, the Requirements Engineering
Journal, Viewpoints, 1999, Vol 4, No. 3, pp 165-167.

[Galal2000]: G. H. Galal, Software Architectonics: Towards a Research Agenda, 2nd
Workshop on Object-Oriented Architectural Evolution. In Object-Oriented Technology
(ECOOP'2000: 14th European Conference on Object-Oriented Programming), Sophia-
Antipolis and Cannes, France, June 12-16, 2000.

[IEEE]: see http://standards.ieee.org/ A thorough discussion of this standard is at:
http://www.incose.org/delvalley/Hilliard_11_14_00.pdf

[ICSEworkshop]: International Workshop on Describing Software Architecture with UML,
co-located with the 23rd International Conference on Software Engineering (ICSE),
Toronto (CA), May 2001. See: http://www.rational.com/events/ICSE2001/index.jsp

[Jackson]: M. Jackson, Software Requirements and Specifications, a lexicon of principles,
practice and prejudices, Addison-Wesley, 1995.

[Kruchten]: P. Kruchten, Architectural Blueprints – The 4+1 View Model of Software
Architecture, IEEE Software, November 1995, 12 (6), pp.42-50.

[Lorentsen]: L. Lorentsen, A-P. Tuovinen, J. Xu, Modelling Feature Interactions in Mobile
Phones, presented at the Workshop on Feature Interaction in Composed Systems, co-
located with the 15th European Conference on Object Oriented Programming (ECOOP
2001), Budapest, Hungary, June 2001.

[Riva]: C. Riva, J. Xu, A. Maccari, Architecting and Reverse Architecting in UML, presented
at the International Workshop on Describing Software Architecture with UML, co-located
with the 23rd International Conference on Software Engineering (ICSE), Toronto, Canada,
15 May 2001.

[Symbian]: Symbian Ltd., see http://www.symbian.com/

