

Experimental Software Schedulability Estimation For Varied
Processor Frequencies

Sampsa Fabritius1 Raimondas Lencevicius2 Edu Metz2 Alexander Ran2
1Nokia Mobile Phones, Sinitaival 5, FIN-33720 Tampere, Finland

2Nokia Research Center, 5 Wayside Road, Burlington, MA 01803, USA
Sampsa.Fabritius@nokia.com Raimondas.Lencevicius@nokia.com

Edu.Metz@nokia.com Alexander.Ran@nokia.com
Abstract. This paper describes a new approach to

experimentally estimate the application schedulability for
various processor frequencies. We use additional
workload generated by an artificial high priority routine
to simulate the frequency decrease of a processor. Then
we estimate the schedulability of applications at different
frequencies. The results of such estimation can be used to
determine the frequencies and control algorithms of
dynamic voltage scaling/dynamic frequency scaling
(DVS/DFS) implementations. The paper presents a
general problem description, the proposed schedulability
estimation method, its analysis and evaluation.

Keywords: real-time embedded systems, scheduling,
mobile computing.

1 INTRODUCTION
Energy is an increasingly important resource for

mobile devices necessitating the analysis and
optimization of power consumption in all components of
the mobile device. One possible way to achieve energy
optimization in device's processor is DVS/DFS
([3][4][5][8][10]–[16])—dynamic voltage
scaling/dynamic frequency scaling. Such scaling adjusts
the operating voltage and the clock frequency of a system
dynamically to fit the actual need. The processor load
typically varies a lot and the processor does not need to
run at the maximum frequency and voltage all the time.
The tasks that require the most performance or the
shortest latencies are executed at the maximum voltage
and frequency. The tasks that do not have high
requirements can be executed at lower voltage and
frequency. The power consumption can be approximated
by the equation P = cCV2F and the energy consumption
by the equation E = Pt. From there E = cCV2Ft. (c is
constant factor, C is constant capacitance, V is voltage, F
- frequency, t - time.) The reduction of voltage requires a
proportional reduction in frequency. Assuming that the
task would take proportionally longer to execute in lower
frequency, the energy ratio in high voltage-high
frequency execution and low voltage-low frequency
execution is proportional to the square of the voltage
ratio in these two executions (Vhigh/Vlow)2.

To summarize, it is possible to save energy by

reducing the voltage and the frequency of a processor if
the lower clock rate is sufficient for the applications, i.e.
if there is enough time to execute them at the lower rate.
This means that applications' executions have a
property—schedulability—that indicates if application
can tolerate DVS/DFS and what frequency they can
tolerate.

There has been a lot of research in applying
DVS/DFS to mobile systems and their software. It is
important to indicate two directions that are not goals of
this paper: First, we are not proposing a new approach to
energy saving. We are not arguing for a new way to
decrease the power consumption, we are using a well-
known and researched DVS/DFS energy saving
approach. Second, we are not proposing a new
scheduling or DVS/DFS control algorithm. There have
been a number of such algorithms proposed
([3][4][5][8][10]–[16]). We assume that one of them is
used in the DVS/DFSed system. The goal of this work is
orthogonal to the two directions above. It is to find out at
what frequencies a system or an application is
schedulable and consequently able to work under
DVS/DFS. The paper explores this important quality,
which enables power savings under DVS/DFS.

First, we present the general schedulability problem
and possible solutions. Section 3 proposes a new
schedulability estimation approach. Section 4 analyzes
the advantages and drawbacks of the proposed method.
We finish with the related work, the future work, and
conclusions.

2 PROBLEM DEFINITION
This section formalizes the application schedulability

problem, i.e. the problem of determining if it is possible
to execute an application at a certain frequency.

Consider an event-driven system with interrupts and
tasks of different priorities. Events occur in this system,
some of them stochastically and some deterministically.
Each event has the processing time and a deadline. The
processing time indicates how long in seconds or how
many processor cycles it takes to process the event. The
deadline indicates a time limit by which an event has to

be processed or else its processing constraint is violated.
The problem then can be stated as follows: can the
system be scheduled to obey the event deadlines at a
certain processor frequency f? Changing processor
frequency does not change the event processing times in
processor cycles or the event deadlines in seconds.
However, such frequency change increases event
processing times in seconds.

A system is schedulable at frequency f if all its
applications, possibly executed concurrently, are
schedulable at frequency f. An application is schedulable
at frequency f if all its executions are schedulable at
frequency f. From here on we will discuss only
schedulability of single applications and allowed
application combinations, since a system is schedulable if
all these cases are schedulable.

Without considering pathological cases, applications
are schedulable at some frequency. The issue then is to
find a minimum frequency at which they are schedulable.
If an application is schedulable at a frequency lower than
the maximum processor frequency, this application can
be executed under DVS/DFS. In practice, systems such
as mobile devices may not be schedulable at the lowest
frequency derived from some theoretical model. For
example, the Palm™ [9] operating system does not
contain an advanced real-time scheduler that would be
able to schedule an application at very low frequency
achievable with an ideal scheduler. This means that
analytical problem solutions should incorporate real
schedulers and their constraints.

The best way to solve an application schedulability
problem is analytical. With a full list of events, their
deadlines and processing times, their periodicity or
stochastic distribution, it is possible to model an ideal or
a real real-time scheduler and to schedule the event
handling at any given frequency. For example, rate-
monotonic scheduling [5], deadline-monotonic
scheduling [1] or their adaptation for DVS/DFSed system
[4][6][11] could be used. However, the significant
obstacle to applying this solution is that obtaining the full
list of all events and all constraints in a typical mobile
device is difficult. For example, wireless network related
events, their deadlines and processing times can be
obtained only by analyzing network protocols, processor
communication with network interface hardware and so
on. The increasing functionality and introduction of
multiple real-time dependent interfaces, such as
Bluetooth, WLAN, IrDA, GPS, and so on, in mobile
devices make the task above very complicated.
Furthermore, the limitations on real-time tasks assumed
in literature such as periodicity or low-bound inter-arrival
time intervals cannot always be assumed in real world
systems. To summarize, analytical schedulability solution
is good, but impossible to obtain in many real world
cases.

When analytical solution is not available, the

application schedulability is determined experimentally.
The application is implemented and executed at different
frequencies on hardware that allows such frequency
variation. Alternatively, the application could be
executed on a whole-system emulator that supports real-
time simulation of any internal or external events and
that allows frequency variation [10]. However,
sometimes neither the available hardware nor the
simulation environment supports the frequency changes.
Sometimes the emulators support frequency changes but
cannot model all needed real-time constraints. What can
be done in such a case? For example, we wanted to
determine the effects of processor frequency decrease in
a mobile phone before the actual processor with
frequency scaling was available. We had the software
and the hardware available, but we could not change the
processor frequency. This meant that we could not
achieve our goals using any of the methods mentioned
above. Consequently, we proposed, implemented, and
used an approach that estimates the application's
schedulability when only hardware with no frequency
change capability is available. Our approach is described
in the next section.

3 EXPERIMENTAL
SCHEDULABILITY ESTIMATION

A simple estimate of schedulability is to determine
the workload—the percentage of time during which a
processor is active—at the maximum processor
frequency and to expand this workload proportionally to
the frequency reduction. This approach, for example,
would indicate that a system with a 50% or lower
workload at the maximum frequency is schedulable at
1/2 maximum frequency, since reducing the frequency in
half raises the workload to 100%. Unfortunately, this
approach is too simplistic for reliable schedulability
determination. With the presence of real-time constraints
that can be broken by a frequency reduction, the possible
workload expansion is not a reliable indication of
schedulability. We propose a more exact approach that
takes care of checking the preservation of real-time
constraints.

To estimate the schedulability of an application, we
take the hardware device on which the application will
be run and introduce additional software workload that
approximates the processor frequency decrease on the
device. We introduce a slowdown routine that runs at the
highest priority in the shortest possible bursts. This
routine has to run at the highest priority so that all
software is affected by the slowdown. Also it has to run
in the shortest possible bursts to minimize the distortion
between the system behavior under slowdown routine
and the system with actual frequency decrease. The
slowdown routine can be implemented as an interrupt
handler routine, since interrupt handlers usually have the
highest priority in the system. Some operating systems
contain executable elements with priorities higher than
those of the interrupt handlers. In such operating

systems, the slowdown routine has to have higher priority
than these executable elements or these executable
elements should be slowed down by other means, such as
instrumentation.

Time

Task 2

1

2 4

3Task 1

1

2

1

2

3

4 4

Task 1

Task 2

Slowdown
Routine

System without
slowdown routine

System with a
slowdown routine

slowdownSleepslowdownExecute

Figure 1. Slowdown routine and task scheduling

Figure 1 shows a system with a 25% slowdown
routine added. The slowdown routine performs some
work for slowdownExecute time and then exits with a
timer set to awaken it after slowdownSleep time. The
slowdownExecute and the slowdownSleep times should
be set to the shortest possible intervals—possibly one
clock tick depending on the operating system and its
services—to have minimum distortion compared to the
system with real frequency decrease. Compared to Figure
1, the slowdown routine would be active for very short
times and very frequently, which is not illustrated in our
simple example. To achieve less than 2% variation in
overhead, the slowdown routine should be activated at
least 10 times per task activation. In our system, the
slowdown routine activated at least 10 times per original
task activation for 64% of task invocations. The
slowdownExecute and slowdownSleep can be set to
different values to produce different overhead
percentages corresponding to different simulated
frequencies and different processor slowdowns. The
slower processor approximation is inexact, because if
some application task has real-time requirements that
make this task to run during the time when the slowdown
routine is active, such requirements will be violated even
though they would not be necessarily violated in a system
with the decreased frequency. For example, in Figure 1,
the block 1 of task 1 is both moved in time and split into
two because of the slowdown routine. It is possible that
this block has a real-time constraint that is violated
because it finishes 2 time measures later than in the
original schedule. In a reduced frequency processor, such
block may finish only 1 time measure—25%—later,

which may still be acceptable. In another situation, if
some task was active for less than slowdownSleep time,
this task could be scheduled during the slowdownSleep
interval and suffer no slowdown at all, though the same
task would be slowed down if the processor frequency
were reduced. In our system about 5% of task activations
were shorter than slowdownSleep time and were not
slowed down because of the reason above. Even with
this observation, we consider that the method provided a
reasonable schedulability estimate for our systems.
However, other users of this method need to consider
whether task activations in their system are much longer
than slowdownSleep time and if not, whether the
schedulability estimates provided by the method are still
acceptable.

The difference between an approximation and an
actual reduced-frequency processor diminishes, as the
slowdownExecute and slowdownSleep times get smaller.
The difference is smallest when slowdownExecute is
equal to 1 processor clock tick. This necessitates keeping
the slowdown routine work and idle times as short as
possible to minimize the interference with other tasks.
The method becomes less accurate when slowdownSleep
is much larger than slowdownExecute or
slowdownExecute is much larger than slowdownSleep,
which is not usually the case for DVS/DFS frequency
changes that fall into the interval of 10-90%. We
executed our system with 10-90% slowdown.

Although short slowdown routine work time
introduces a lot of context switching, we incorporate the
memory, cache and other effects resulting from the
context switches into the
slowdownExecute/(slowdownSleep + slowdownExecute)
ratio that indicates the frequency decrease.
slowdownSleep/(slowdownSleep + slowdownExecute)
multiplied by original frequency indicates the modeled
processor frequency.

The approach above introduces uniform overhead
over time, since slowdownExecute/(slowdownSleep +
slowdownExecute) ratio remains constant during the
application execution. However, our approach can be
used also to determine the schedulability of the system
under variable frequency. For example, one of the
DVS/DFS control algorithms can be used to set the
frequency per task or per time interval. This would be
approximated by changing the
slowdownExecute/(slowdownSleep + slowdownExecute)
ratio of the slowdown routine for the task or the time
interval to correspond to the frequency given by the
DVS/DFS control algorithm. Variable frequency does
not pose any additional difficulties for the estimation
approach. The only condition necessary for its
application is that the time between two processor
frequency changes was much larger than
slowdownExecute + slowdownSleep. Otherwise, the
overhead introduced by the slowdown routine would not
closely approximate the frequency decrease. Lee and

Krishna [5] noted that the DVS/DFS mode switching
could be performed in microsecond range. Such
DVS/DFS switch delay is insignificant and we do not
consider it in the variable frequency schedulability
estimation.

Time

Task 2

1

2

Task 1

1

2

1

2

Task 1

Task 2

Slow
down
Task

System without
slowdown task

System with
variable slowdown

1

2

Figure 2. Per task slowdown

Figure 2 shows the possible scheduling with a
variable per task slowdown. In it, task 1 is scheduled at
50% maximum frequency approximated by the 50%
slowdown. During execution of task 2, the slowdown is
only 25% simulating the execution at 75% of the
maximum frequency. The figure is meant only as
illustration and does not satisfy the condition above
requiring the frequency change interval to be much larger
than slowdownExecute + slowdownSleep. For example,
in systems we analyzed, we used frequency change
intervals 50-1000 times longer than slowdownExecute +
slowdownSleep.

With our approach implemented, there is still a
question how to determine if the resulting system is
schedulable, i.e. if it functions correctly at the reduced
frequency. The answer to this question can be found
either in the formal system validation or, more often, in
system testing with a comprehensive test suite. A
complete test suite needs to be selected to obtain reliable
test results and with them the schedulability estimate.
Similar testing or validation needs to be done in other
experimental schedulability estimation methods. The test
suite can be executed at different frequencies using a
binary partitioning to find the lowest frequency at which
the test suite succeeds. In particular, testing could start at
50% slowdown and increase to 75% slowdown if the test
suite succeeds or decrease to 25% slowdown if the test
suite fails. Further binary partitioning could continue
until the schedulable frequency is known as precisely as
needed. Alternatively, the first test could start at the
frequency corresponding to average workload, since such

frequency should be close to the actual schedulable
frequency. Such start could decrease the number of test
runs. A more sophisticated approach is needed if the
goal is to find an optimal DVS/DFS control algorithm
that can change the frequency dynamically. This is left
for the future work.

We have implemented the slowdown approach
described above on several different mobile phones and
have used it to determine the schedulability of various
mobile phone applications including phone book
browsing, games, web browsing, SMS message sends
and receives and phone calls at various frequencies. The
applications were schedulable at certain frequencies and
became unschedulable at certain lower frequencies. The
frequencies at which mobile phone applications are
schedulable are not provided due to confidentiality
reasons. We have also implemented the variable
slowdown approach. In our implementation and system
test executions, we observed less than 5% slowdown
variation, i.e. the difference of the observed slowdown
from the specified slowdown level during the execution
of test programs. We are confident that our method
provides an estimate for system schedulability at lower
frequencies that could be used to evaluate DVS/DFS
applicability.

4 ANALYSIS OF SCHEDULABILITY
ESTIMATION APPROACH

Our approach is more exact than assuming
applications to be schedulable at the frequency equal to
average workload expressed as a fraction and multiplied
by original frequency, since such number ignores any
real-time constraints.

Although our approach can disturb the periodicity of
lower priority tasks, because higher priority tasks will
occupy more processor time, this effect also occurs in a
genuine frequency decrease and is not an artifact of our
approach. To function correctly at multiple processor
frequencies and in our approach, tasks and operating
system time services, such as timers, should refer to the
absolute time and not to processor frequency dependent
time values.

Our approach also improves upon the Weiser's et al.
[16] and Govil's et al. [3] calculations of the DVS/DFS
induced delays. Though the calculation of such delays
provides a numerical estimate of schedulability, it does
not take into account any real-time constraints that
cannot tolerate delays. Weiser et al. [16] and Govil et al.
[3] also argue that any workload cycles spilled over from
one DVS/DFS interval to the next should be avoided.
However, Pering et al. [10] and we argue that a system
delay has to be avoided only if it breaks the real-time
constraints or if it slows down the user interface. While
Pering et al. [10] consider only such delays as waiting
for an audio/video packet, UI event processing, our
approach is more general since it considers the system
schedulable only if it passes all testing criteria.

Weiser et al. [16] noticed that some task delays are
"hard", i.e. sometimes a task needs to wait a set amount
of time for a disk read or a network event (Figure 3, 1st
diagram). Such gaps cannot be filled in a system with
reduced frequency, as illustrated in the 2nd diagram in the
Figure 3. DVS/DFS algorithms sometimes do not
correctly deal with such hard delays, expecting as in the
3rd diagram in Figure 3 to fill the gap with computation.

Our approach correctly deals with the hard delays,
since it slows down the system independently of the hard
delay existence. By doing this it does not fill the hard
delays. If our approach is used with a DVS/DFS control
algorithm, the algorithm itself has to deal with hard
delays correctly by not decreasing the frequency to fill
the hard waiting gaps. If the DVS/DFS algorithm
incorrectly tries to fill hard delays, such errors will be
detected during the testing.

Time

1

1. Task
at high

 frequency

1

3. Task
at lower

frequency

Disk read

Hard
delay

2

Incorrect expectation - hard delays cannot shrink

Disk read

1

2. Task
at lower

frequency

Disk read

Correct - hard delays stay constant

2

2

Figure 3. Hard delays

Our approach is weaker than a formal schedulability
analysis. If researchers can obtain and formally analyze
the real-time requirements and constraints of a system,
they can create an ideal schedule that conforms to these
requirements. Such a schedule would indicate the ideal
schedulability. Unfortunately, most of the time such
analysis is extremely complicated.

5 RELATED WORK
DVS/DFS was proposed by Weiser et al. [16]. They

also proposed the concept of "soft" and "hard" delays.
Govil et al. [3] elaborated on Weiser et al., proposed and
tested a variety of DVS/DFS control algorithms on
Weiser's traces. Pering et al. [10], Sinha and
Chandrakasan [15] suggested additional DVS/DFS
control algorithms. Pouwelse et al. [12][13][14]
suggested DVS/DFS control based on information from
power aware applications.

Our work is not applicable in the situations where

DVS/DFS was already implemented on real systems,
since in these cases the schedulability can be determined
on the implemented platform and does not need to be
estimated. We target systems with hardware that does
not yet support frequency change.

Both Weiser et al. and Govil et al. use fine-grained
delay measures. They assume that any workload cycles
spilled over from one DVS/DFS interval to the next
contribute to the delay. Pering et al. [10] paper expands
on the work by Weiser et al. and Govil et al. They use
implementable variations of DVS/DFS algorithms in a
simulation environment for mobile device data suite:
address book browsing, real-time audio and MPEG
decompression. They introduce a higher-level delay
metric that does not penalize processing during the time
when system waits for an audio/video packet. They also
do not penalize the processing delays unnoticeable in the
user interface. Our approach uses a similar metric, since
it considers the system schedulable if none of the testing
criteria—including usability criteria—of the system are
broken.

Lee and Krishna [5] and Gruian [4] propose the
DVS/DFS algorithms that ensure schedulability for a
known set of real-time tasks with specified periods,
worst-case execution times and deadlines. Our work
assumes a system where some of these parameters are
unknown.

Lorch and Smith [7] propose an optimization
applicable to any DVS/DFS algorithm based on work
distribution in the executed task. Their work is related to
ours in the sense that they propose an addition to any
DVS/DFS algorithm. Similarly our schedulability
estimation can be performed under any DVS/DFS
algorithm.

Martin and Siewiorek [8] noted some non-linear
battery and memory effects that complicate the energy
savings due to voltage and frequency reduction. Since
our approach does not estimate energy savings, only
schedulability, we ignore Martin and Siewiorek's
findings.

6 LESSONS AND FUTURE WORK
The important lesson from estimating application

schedulability is that application design strongly
influences the schedulability of the system. To
generalize this, we claim that improving the performance
of an application also improves its other characteristics:
energy consumption—by leaving more time for a
processor to sleep, schedulability—by leaving more
unconsumed processor time and executing tighter than
any of the real-time constraints, and so on. The general
optimization rule of thumb that there is no point in
optimizing a system if the user does not see a difference
in the user interface is shown to be wrong. Even if the
user does not see a difference, the energy consumption
and schedulability can be further improved by improving
performance, which will affect users through the energy

conservation. This needs to be further studied and
presented to the system designers perhaps as design
patterns [2] for schedulability improvement.

Another area for further study is real-time constraints
and acceptable task latency deadlines, since they also
affect schedulability and are not necessarily improved by
the performance improvements. For example, if the real-
time constraints can be relaxed without changing the
performance, the system's schedulability will improve.

7 CONCLUSIONS
This paper presents a schedulability problem that is

the basis for DVS/DFS applicability. We describe a new
approach to the experimental estimation of application
and system schedulability. The basis of the approach is
the introduction of additional workload in an artificial
highest priority routine to approximate the processor
frequency decrease. Thus we applied the idea of using
extra workload in the new context of simulating
frequency decrease similar to actual DVS/DFS. We have
implemented this approach and analyzed mobile phone
application schedulability in the situation where no
DVS/DFS capability was available and no other analysis
methods could be used. The paper presents our approach,
its analysis, lessons learned and the future work. We
believe that the new schedulability approach will be
helpful for DVS/DFS analysis and introducing DVS/DFS
into various systems and applications.

8 ACKNOWLEDGEMENTS
We thank the people from Nokia Mobile Phones who

supported this research. We thank Karel Driesen and
anonymous reviewers for valuable comments on this
paper.

9 REFERENCES
[1] N.C. Audsley, A. Burns, M.F. Richardson, A.J.

Wellings, Hard Real-Time Scheduling: The
Deadline-Monotonic Approach, Eighth IEEE
Workshop on Real-Time Operating Systems and
Software, pp. 133-137, 1991.

[2] E. Gamma, R. Helm, R. Johnson, J. Vlissides,
Design Patterns Elements of Reusable Object-
Oriented Software. Addison-Wesley, Reading,
Massachusetts, 1994.

[3] K. Govil, E. Chan, H. Wasserman, Comparing
Algorithms for Dynamic Speed-Setting of a Low-
Power CPU, Proceedings of the First Annual
International Conference on Mobile Computing and
Networking, ACM Press, pp.13-25, 1995.

[4] F. Gruian, Hard Real-Time Scheduling for Low-
Energy Using Stochastic Data and DVS Processors,
Proceedings of the International Symposium on Low
Power Electronics and Design 2001, Huntington
Beach (CA), US, pp. 46-51, August 6-7, 2001.

[5] Y.-H. Lee, C.M. Krishna, Voltage-clock Scaling for
Low Energy Consumption in Real-time Embedded
Systems, Proceedings of the Sixth International
Conference on Real-Time Computing Systems and
Applications, pp 272-279, Hong Kong, China,
December 1999.

[6] C. L. Liu, J. W. Layland, “Scheduling algorithms
for multiprogramming in a hard-real-time
environment”, Journal of the ACM, vol. 20, no 1,
pp. 46-61, 1973.

[7] J. Lorch, A.J. Smith, Improving dynamic voltage
scaling algorithms with PACE. Proceedings of the
ACM SIGMETRICS 2001 Conference, Cambridge,
MA, pp. 50–61, June 2001.

[8] T.L. Martin, D.P. Siewiorek, The Impact of Battery
Capacity and Memory Bandwidth on CPU Speed-
Setting: A Case Study, Proceedings of the
International Symposium on Low Power Electronics
and Design 1999, San Diego, USA, pp. 200-205,
1999.

[9] Palm Inc., www.palm.com, 2002.
[10] T. Pering, T. Burd, R. Brodersen, The simulation

and evaluation of dynamic voltage scaling
algorithms, Proceedings of the International
Symposium on Low Power Electronics and Design
1998, pp. 76-81, August 1998.

[11] P. Pillai, K.G. Shin, Real-Time Dynamic Voltage
Scaling for Low-Power Embedded Operating
Systems, Proceedings of 18th ACM Symposium on
Operating Systems Principles (SOSP'01), pp. 89-
102, Banff, Alberta, Canada, October, 2001.

[12] J. Pouwelse, K. Langendoen, H. Sips, Dynamic
Voltage Scaling on a Low-Power Microprocessor,
Proceedings of the 7th International Conference on
Mobile Computing and Networking (Mobicom), pp.
251-259, Rome, Italy, July 2001.

[13] J. Pouwelse, K. Langendoen, H. Sips, Application-
directed voltage scaling, IEEE Transactions on Very
Large Scale integration (TVLSI), September 2002.

[14] J. Pouwelse, K. Langendoen, H. Sips, Energy
priority scheduling for variable voltage processors,
Proceedings of the International Symposium on Low
Power Electronics and Design 2001, Huntington
Beach (CA), US, pp. 28-33, August 6-7, 2001.

[15] A. Sinha, A. Chandrakasan; “Dynamic Voltage
Scheduling Using Adaptive Filtering of Workload
Traces”, Proceedings of the 14th International
Conference on VLSI Design, Bangalore, India,
January 2001.

[16] M. Weiser, B. Welch, A. Demers, S. Shenker,
"Scheduling for Reduced CPU Energy,"
Proceedings of the 1st USENIX Symposium on
Operating Systems Design and Implementation, pp.
13-23, November 1994.

	INTRODUCTION
	PROBLEM DEFINITION
	EXPERIMENTAL SCHEDULABILITY ESTIMATION
	ANALYSIS OF SCHEDULABILITY ESTIMATION APPROACH
	RELATED WORK
	LESSONS AND FUTURE WORK
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

