
Exploration Testing

Juhana Helovuo
Tampere University of Technology, Software Systems Laboratory

P.O. Box 553, 33101 Tampere, Finland
tel: +358-3-365 3823 , fax: +358-3-365 2913

<juhe@cs.tut.fi>

Sari Leppänen
Nokia Research Center

P.O. Box 407, 00045 Nokia Group, Finland
<sari.leppanen@nokia.com>

Abstract

This paper describes a new way of testing reactive sys-
tems as investigated by the RATE-project at the Tampere
University of Technology. We abandon the idea of systemat-
ically using a large library of predetermined test cases and
instead use a “live” specification to generate test runs on-
the-fly, as testing progresses. In order to do this, we assume
that the behavior of the implementation under test is spe-
cified as a labelled transition system. This testing method
is most applicable to testing concurrent, nondeterministic,
and reactive behaviors rather than data-intensive computa-
tion.

1 Introduction

Traditionally, attempts to automate software testing are
based on the idea of predetermined test cases: First a testing
engineer creates a collection of test cases, ideally by deriv-
ing them from a specification. These test cases are essen-
tially linear sequences of inputs and their expected outputs.
Then the test engineer runs the software under test against
these test cases: sends the listed inputs to the software and
compares the outputs to the expected outputs as described
in the test sequences.

This traditional method of testing works quite nicely
with respect to traditionaltransformational programs,
which can be seen as implementations of a (partial) func-
tion from the inputs to the outputs. A Turing machine mod-
els this type of a computation. There is a lot of literature on

this type of testing, for example, [9] [8] [5] and more mod-
ern approaches, based on formal methods, are presented in
[12] [13] [1].

However, there are problems with this approach. Many
modern software systems arereactivein their nature, that is,
they cannot be modelled as a transformation from inputs to
outputs, but rather as a state-transition system, which con-
sumes inputs and responds with outputs. Such systems ex-
hibit nondeterministicbehavior, i.e. for a sequence of inputs
there can be several correct outcomes. A test method based
on predetermined test cases cannot very easily accommod-
ate for all of these, since the number of different legal output
sequences is often very large.

In this paper we present a method, which we callexplor-
ation testing. Exploration testing does not use test cases
at all. Instead it uses a behavioral specification of the im-
plementation under test (IUT). The behavioral specification
specifies a complete set of executions rather than one linear
sequence of actions, i.e. one execution. Similar techniques
have been proposed previously, for example Guided Ran-
dom Walk [6] and On-the-fly testing [2].

Although the specification represents a more or less
complete set of legal executions, it need not describe the
behavior in too much detail. The specification may be ab-
stracted to a rather high level so that it does not need to con-
tain every detail about the low-level behavior of the IUT. It
suffices that the test specification contains enough details,
so that it can be used to generate reasonable test inputs for
the IUT.

The rest of this paper is structured as follows. Section
2 describes our notion of a test specification. Section 3 de-
velops the subject more formally and gives a test execution
algorithm. We give some small examples in section 4 and a
larger case study in section 5 and finally give a summary in

1

section 6.

2 The Test Specifications

We represent externally observable behavior as a la-
belled transition system (LTS), which closely resembles a
finite automaton. However, an LTS has no concept of ac-
cepting states and theoretically an LTS need not be finite.
It should be noted that an LTS can benondeterministicand
there can beinvisible actions.

Since we are using the LTS formalism to represent beha-
vior, we have to assume that the behavior of the IUT can be
represented as an LTS. This is known as thetest hypothesis.
Note that we do not assume that we know much about the
LTS representation of the IUT nor that we can actually con-
struct such an LTS. We only assume that an LTS, which
represents the behavior of the IUT, exists in a mathematical
sense.

The behavioral specification (or in this case, the test spe-
cification) should be simple enough for humans to under-
stand. The specification can be simplified by hiding irrelev-
ant details:

� The specification need not pay any attention to the in-
ternal workings of the system, only to a relevant por-
tion of the externally observable behavior.

� The granularity of observations can be coarsened by
grouping several actions together. Coarsening the
granularity of the system may change some important
atomicity properties of actions and thus alter the beha-
vior of the system in an important way. Therefore this
technique must be used with care.

� The specification may be concerned with only one as-
pect of the system. One such sub-specification should
be easier to understand than the whole system specific-
ation. The behavior of the whole system can then be
composed from such simpler pieces.

2.1 Layers of abstraction

Since we formally view both the specification and the
observed behavior of the actual system as LTSs, we can
change our point of view and treat a specification as an im-
plementation. The advantage here is that we can use the
same testing technique to compare two specifications of the
same system to each other. Namely, we can view a lower-
level specification as an implementation of a higher-level
specification and test the execution of the lower-lever spe-
cification against a high-level specification (Fig. 1).

PCO

PCO
Tester

Spec
IUT

Figure 2. Testing environment

3 A Model for Exploration Testing

3.1 The Testing Environment and Specifications

The testing environment (Fig. 2) consists of the test
subject, orimplementation under test(IUT), the tester and
two communication channels between them, one for input
and the other for output. The communication channels are
sometimes calledpoints of control and observation(PCO)
[4].

The input channel deliversactions(or events) from the
tester to the IUT. We assume that the communication is syn-
chronous, so there is no queue of input events. Some in-
put events may sometimes berefusedby the IUT. Refusals
are used only when the physical interface being modelled is
such that the receiver (or the interface) can block the sender
from sending some inputs. For example, in a keyboard it is
usually impossible for a key to be pressed down twice in a
row without releasing it in between. Thus, we can say that a
key refuses pressing actions if it has been pressed down but
not released.

The output channel delivers externally observable ac-
tions of the IUT to the tester. The tester cannot refuse any
outputs from the IUT.

3.2 The Specification

The test specification is a deterministic1 LTS with the
following properties:

� The specification has some setS of states, including
an initial statês 2 S .

� For each input and output event there is a symbol (ac-
tion label), which is transmitted through a PCO. Each
specification has a set of input symbols and a set of
output symbols, denoted with�I and�O, respectively.
�I \ �O = ;.

� The specification also contains a set ofinput refusal
actions, �

I
=
�
x
�� x 2 �I

	
. An actionx means that

1Only the specification is required to be deterministic. The IUT need
not be deterministic.

actual system low−level specification

implements

specifies

high−level specification

specifies

implements

Figure 1. A hierarchy of specifications

the IUT refuses to accept inputx. These are necessary
for modelling interfaces which can observably refuse
an input action.

� The full alphabet known by the specification consists
of the input, output and input refusal alphabets and
three special symbols:�SPEC = �I [�O [�

I
[

fÆ; �; �g. The implementation does not actually ex-
ecute input refusal symbols. In fact, an input refusal
does not change the internal state of the IUT at all.
Only the specification may change its state because of
an input refusal. If an input refusal changes the state
of the IUT in any way, then it should not be modelled
as an input refusal.

� The special symbol� denotes an invisible, internal ac-
tion, which may be executed at any time it is enabled.�

is never sent over a communication channel or a PCO.

� The symbol� is a special input action, which causes
the IUT to be reset and returned to its initial state. The
tester sends a�-action to start a new test run.

� The symbolÆ is an artificial output action, which
meansquiescence[13], or that no output was observed.
The interface between the tester algorithm and the
IUT uses this action as an indication that the IUT has
stopped and will send no further output. In simulated
situations a quiescence is easy enough to detect, but
in real applications this situation may be detected only
by using timers or other special instrumentation to ob-
serve when the IUT has really stopped and does not
produce any further outputs.

� The transitions of the specification are a set� of triples
� � (S � �SPEC� S).

3.3 The Implementation Under Test

We assume that the implementation under test (IUT) is a
black box with an LTS-like-behavior, which we can observe
in test runs. Since this is testing and not model-checking,
we do not assume that we can see the internal workings or
structure of the IUT. The IUT can be a simulator executing

a model or an actual working implementation of some sys-
tem, provided that there is a suitable interface to the tester.
In our experiments we have used a simulator executing LTS
models compiled from SDL specifications.

Specifically, we make the following assumptions:

� We can communicate with the IUT via input and out-
put actions. Every action is either an input or an output.
We cannot see what the IUT is about to do next or what
input actions it is prepared for. Although sometimes
the IUT may refuse an input, we cannot know that in
advance without actually trying to send the input.

This method of communication should not be confused
with synchronous parallel composition used in verific-
ation.

� There is a special input symbol�, which can be used
to reset the IUT to its initial state at any time.

� We can detect when the IUT has stopped and is not go-
ing to output anything without further stimulus (i.e. in-
puts). This situation is modelled by the artificial output
actionÆ, which is produced by the tester when needed.

3.4 A Test Execution Algorithm

In this section we outline an algorithm, which the tester
uses to test the IUT against a specification LTS.

Figure 3 presents the steps of the algorithm as a state
transition diagram. The tester keeps track of the current
state of the specification during the execution of the tests.
A test step is executed as follows: First the tester inspects
the specification to see what kinds of transitions are possible
at the current state.

If only output transitions are possible in the specification
(the second leftmost branch of Figure 3), we continue to
receive output from the output channel. (In this contextÆ

counts as output.) The interface to the IUT is such that the
tester is guaranteed to receive something, either a real event
or aÆ-event. After receiving the output there are three pos-
sibilities. If the output is something the specification is not
prepared for, we declare an illegal trace, or in case of un-
specifiedÆ, an illegal output refusal. Otherwise the output

output
only

illegal
output

choose
input

choose
output

receive
event

illegal
trace

legal
deadlock

specification
advance

one step

quiescence
illegal

illegal input
refusal

����

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

��

������

����

���� ����

����

�
�
�
����

���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����

����
����
����
����������������������

����������
����������
����������
����������

��������������
��������������
��������������

��������������
��������������
��������������

���
���
���
���

���
���
���
��� ��

��
��

��
��
��

�����������
�����������
�����������
�����������

both

receive choose & send
eventevent

δ

no actions

other

accept

legal output

input only

illegal legal

refuse
unspec. δ

Figure 3. The exploration testing algorithm

is legal (possiblyÆ) and we take that transition and start the
next testing step.

If only inputs are possible in the specification, the tester
chooses one of these input actions and tries to send it to the
IUT. If the IUT accepts the event, then we proceed to the
next testing step as before. If the IUT refuses the event and
there is no possibility of a refusal action in the specification,
then we declare an illegal input refusal.

If there are no possible actions in the current state of the
specification, the only acceptable output isÆ.

Each test run is initialized by sending the�-action (reset)
to the IUT and setting the current state of the specification
to be the initial statês.

3.5 Semantics of Tests

The test execution algorithm outlined in the previous
subsection tests for three kinds of requirements. In other
words, the test algorithm can detect three kinds of faults in
the behavior of the IUT:

� Illegal traces. Any execution trace, which does not
appear in the specification is considered illegal.

� Illegal output failures (quiescence). An absence of
response from the IUT when the specification states
that there should be some response.

� Illegal input failure (input refusal). A condition
where an input could not be fed into the IUT even
though the specification does not allow a refusal to oc-
cur. This can happen only with interfaces which can
actually refuse an incoming input.

These concepts can be formalized, but first we need some
notation:

Definition 1 (Arrow notation) The following are more
convenient notations for executions of an LTS.

� s�a! s0 iff (s; a; s0) 2 �

� s�a1a2 : : : an! s0 iff
9s0; s1; : : : ; sn : s = s0 ^ s0 �a1! s1 �a2! � � � �
an! sn ^ s0 = sn:

� If � = a1a2 : : : an thens �a1a2 : : : an! s0 can be
written s��! s0.

� s��! iff 9s0 : s��! s0

� s =a1a2 : : : an) s0 iff s���a1�
�a2�

� : : : ��an�
�!

s0 , where each�� denotes any sequence of zero or
more� -actions, and none ofai is � .

� s =�) iff 9s0 : s =�) s0

Now we can give a more precise definition of traces and
input and output failures.

Definition 2 (Traces) The set oftracesof an LTSP is
tr(P) =

�
� 2 (�I [�

I
[�O [fÆg)�

�� ŝ =�)
	

Definition 3 (Output Failures) The set ofoutput failures
of an LTS P is the set of traces, which end inÆ: ofail(P) =�
� 2 tr(P)

�� 9�1 2 tr(P) : � = �1Æ
	

.

Definition 4 (Input Failures) The set ofinput failuresof
an LTS P is the set of pairsifail(P) =

�
(�;R) 2 tr(P)�

2�I

�� 9s : ŝ =�) s ^ 8a 2 R : :(s =a))
	

. The setR
is called aninput refusal set.

These three sets form asemantic modelfor this testing
algorithm. They capture all the necessary information to
determine whether errors (according to this algorithm) will
be found or not.

We have not specified the structure of the implementa-
tion I, but since we assume it behaves in experiments like
some LTS, we can observe single execution traces, output
failures and input failures.

The testing algorithm presented in the previous subsec-
tion will not find an error in implementationI with respect
to the specificationS, if the following conditions hold and
the sets of known input and output events are the same.

8><
>:

tr(I) � tr(S)

ofail(I) � ofail(S)

ifail(I) � ifail(S)

This claim should be easy to check informally by com-
paring the definition to the testing algorithm. The al-
gorithm can discover three kinds of errors: illegal traces, il-
legal input refusals and illegal output refusals (quiescences),
which correspond to the three subset relations given above.
Since the testing algorithm and the implementation are non-
deterministic, we cannot guarantee that any specific error
will be found.

In a practical implementation the IUT may contain much
more details than the specification, which could have just
a few high-level actions to keep the test running. In this
case the tester should just ignore any actions, which are not
included in the specification at all:

First, we define an abstracted versionIA of the imple-
mentationI as follows. The abstracted version hides those
actions which are unknown to the specification, i.e. do not
belong to its alphabets.

(�I [�O) � �IMPL

IA = hide (�IMPL � (�I [�O)) in I

where the expression “hideA in P ” means converting
action labels in LTSP into � if they appear in the setA.

Then we can compareIA to S as before.

8><
>:

tr(IA) � tr(S)

ofail(IA) � ofail(S)

ifail(IA) � ifail(S):

!rec

!ack!err

?send

Figure 4. A small specification example

4 Small Examples

This section presents some small usage examples of the
exploration testing method.

The first example is a model of a very simple commu-
nication protocol. It consists of three states and has four
possible actions: ?send, !err, !ack and !rec as shown in Fig-
ure 4.

We see the behavior of the protocol from the viewpoint
of the protocol user. The transmitting end issues the com-
mand “?send” and depending on the success of the transfer,
the receiving end will see an output “!rec” at the other end
of the channel or nothing at all. Accordingly, the sender will
get either an acknowledgment message or an error indica-
tion. Every visible action has been designated either as an
input(?) or output(!) to/from the protocol model. This pre-
vents the environment from influencing the choice between
“!err” and “!rec”.

When this protocol is tested against itself, the testing al-
gorithm can be executed indefinitely without finding any er-
rors. Figure 5 describes three different implementations of
the specification.

The leftmost model adds the possibility of deadlocking
after acknowledging a transmission. The testing algorithm
can detect this as an input refusal, since the next action after
the deadlock should be “?send”. In the current version of
the test execution and simulation software this error will be
detected typically after executing about ten actions.

The second model has a similar deadlocking state, but in
this case it is harder to reach randomly, since entering the
deadlock requires two consecutive “wrong” nondetermin-
istic choices by the implementation model. The deadlock-
ing state is detected as an output refusal after about 20 ac-
tions, on the average.

The third model represents the behavior of an ideal situ-
ation. The transmission will always succeed and there is
no possibility of outputting “!err”. The testing algorithm
cannot find any errors, since there are no unspecified traces,
output or input failures. However, it is impossible to get
very high test coverage with respect to the specification,

!rec

!err

?send

!ack
!ack

!err

?send
!ack

!rec

?send

!ack

?send

!rec

!ack

?send

Figure 5. Example implementations

since one out of four transitions is never exercised.

5 The Radio Link Control Protocol case

UMTS (Universal Mobile Telecommunication System)is
a third generation mobile telecommunication system using
WCDMA (Wideband Code Division Multiple Access)radio
access technique. The new radio access technique requires
major changes in the radio access network, consisting of the
network elements and protocols participating to data trans-
mission in the radio interface.RLC (Radio Link Control)
protocol is one of the new UMTS protocols. It is a data
link layer protocol, according to the OSI reference model,
providing reliable data transmission service for the upper
layers over the unreliable radio interface. It uses the unre-
liable data transmission service provided by the subjacent
MAC (Medium Access Control)protocol (see Figure 6).

RLC protocol was standardized in March 2000 by3GPP,
an international standardization forum consisting of manu-
facturers, operators, authorities etc. interested in regulation
and development of the third generation systems. The spe-
cification [11] defines several services, functions and pro-
cedures for the protocol. The RLC protocol model used
here is an augmented version of the simple model described
in [7].

The main task of RLC protocol is to provide data transfer
service to upper layers. The protocol specification defines
three different types for data transfer service: transparent,
unacknowledged and acknowledged data transfer. From the
analysis and testing point of view the most complex and
thus the most interesting one is data transfer in acknow-
ledged mode. The specification defines several functions
that are needed to support acknowledged data transfer. In
order to keep the size of the model manageable and to re-
strict the analysis to the elementary data communication
functionality, we had to consider each of these functions
carefully and do as much abstraction on them as possible.
For more detailed description of the functionality of the
RLC protocol see for example [3].

RLC
Control

MAC ja
L1 Control

RLC

MAC

L
3

L
2

L
1

BCCH PCCH CCCH
DCCH DTCH

RLC-URLC-C

BCH PCH FACH RACH DSCH DCH

PDCP

WCDMA L1

Figure 6. UMTS data link layer over the radio
interface

5.1 Abstractions in the Model

We include into our model the transfer of user data with
flow control, the in-sequence delivery of higher layerPDUs
(Protocol Data Unit)and duplicate detection. These func-
tions are defined in the RLC protocol specification [11] and
they are essential for establishing the reliable data transmis-
sion. The size of the user data, i.e. the size of a RLCSDU
(Service Data Unit), is assumed to be exactly the same as
the size of the data field in a RLC PDU. Thus the segmenta-
tion, reassembly, concatenation and padding functionalities
can be left out.

For the radio interface we will use alossy channel, which
makes nondeterministic choices for either delivering the
RLC PDU to the receiving side or losing it. However, the
channel does not duplicate or corrupt the packets, so we
have not included the error correction functionality into our
model. Ciphering is not yet defined precisely in the spe-
cification, so we leave it out from our model. For detecting
and recovering from protocol errors we include thereset
proceduredescribed in the specification.

Besides the abstractions on the functionality, we also
make abstractions on data types. We abstract the user data,
the type of SDUs, using Wolper’sData Independence Prin-
ciplepresented in [14]. We want to test the reliable transfer
of user data, especially the in-sequence-delivery of higher
layer PDUs and duplicate detection. According to Wolper,
two separate types for user data are enough for this. For
flow control, we will use thesliding window mechanism.
Because we limit the size of the transmitting and receiving
window to one, only two separate sequence numbers are
needed for PDUs. Now we can define an enumerated data
type with two items, 0 and 1, and use this both for the user
data and sequence numbering.

The specification defines some parameters for the con-
figuration message used by the upper layer to establish and
release a RLC connection. Parameters are used to config-
ure the RLC protocol entity to the appropriate mode and
to define parameter values used in ciphering and segment-
ation. Because we have only one functional mode in our
model and no ciphering or segmentation at all, the paramet-
ers are left out from configuration messages.

5.1.1 Functional description

In our model the connection establishment phase consists of
receiving a single connection establishment message from
the upper layer. The UMTS data link layer over the radio
interface has two sublayers: RLC and MAC. RLC layer
provides a radio solution-dependent reliable link for the
user and MAC layer controls, among other things, the ac-
cess signaling procedures (request and grant) for the radio
channel [10]. Together with an upper layer protocol,RRC

(Radio Resource Control), MAC establishes the physical ra-
dio link. After this is done, RRC sends a configuration mes-
sage to RLC layer to establish the RLC connection [11]. We
assume that the message is received at the same time at both
ends of the protocol.

The data transfer procedure is initialized when an SDU
is received from the upper layer. For each SDU, the RLC
protocol entity creates a corresponding PDU. The SDU is
placed into the data field of the PDU as such, and the ap-
propriate sequence number is placed into the PDU header.
A timer for the PDU transmission is set right after send-
ing the PDU to the channel, which is modeling here the
lower layers and the radio interface. No further requests are
accepted from the user before the data transfer procedure
for the previous one isterminated. Data transfer procedure
terminates either when the transmitting side receives an ac-
knowledgment for the PDU or, in an abnormal case, after
sending a notification of a protocol error to the user. In the
normal case the transmitter receives the acknowledgment
for the PDU before the maximum amount of resendings is
exceeded. Resending is triggered, as usually, by the PDU
transmission timer expiration. The PDU transmission timer
is reset when the acknowledgment with the appropriate se-
quence number is received. Acknowledgments with other
sequence numbers are ignored.

After receiving a PDU, the RLC protocol entity in the
receiving side removes the header and delivers the SDU to
the upper layer. After sending the corresponding acknow-
ledgment to the channel, it updates the sequence number
counter. The transmitting side updates the sequence number
counter after receiving the acknowledgment. In our model,
constructed according to a very early specification, the de-
livery of the SDU was not confirmed to the user in the trans-
mitting side. In an abnormal case where the PDU transmis-
sion timer expires, and the predefined maximum amount of
retransmissions for the PDU is full, the reset procedure is
executed. The purpose is to resynchronize the data trans-
mission and bring the protocol back into the consistent state.
The transmitting side sends the reset message and sets a
timer. The receiving side acknowledges the message and
updates the sequence number to a predefined initial value.
In the transmitting side the sequence number is updated to
the same initial value right after receiving the acknowledg-
ment for the reset message. Data transfer continues with the
next SDU received from the user. A maximum number of
resendings is defined for reset messages also. According to
the specification, the RLC protocol does not notify the user
of recoverable protocol errors, i.e. when the reset proced-
ure is executed successfully. So, initially also in our model
the notification was given only when the timer expired after
resending the maximal amount of reset messages.

Correspondingly to the connection establishment scen-
ario, also the disconnection phase consists of receiving a

single disconnecting message from the upper layer. We as-
sume it to be received simultaneously on both transmitting
and receiving side. Both protocol entities return directly to
the initial state to wait for a new connection establishment.

5.2 Errors Found in Testing

We used as an IUT anSDL (Specification and Descrip-
tion Language)implementation with the functionality de-
scribed in the previous section. We defined the desired
external behavior of the protocol with a small, high-level
LTS specification. In the beginning there were only 4 states
and 8 transitions in the specification. As the testing pro-
ceeded, also the specification evolved to be more extens-
ive and precise. We found various types of errors: errors
and deficiencies in the high-level specification, errors in the
implementation model, faults in the testing strategy and in-
correct assumptions made on the behavior of the protocol
environment. In the following, we will give some examples
of different error types.

The processes of the original SDL implementation were
first converted semi-automatically into separate LTSs, using
a self-written conversion program and manual checking of
the result. The elementary conversion process and the ba-
sic parallel composition arrangement for the processes are
described in [7]. In this phase we found couple of conver-
sion errors caused by the incomplete handling of some SDL
language features in the conversion program. Errors were
corrected into the resulting LTS manually.

5.2.1 Incorrect modeling of the environment

The first error we found was caused by unrealistic behaviour
of the model. For the media, modeling the radio interface,
we used two unidirectional channel components. We de-
scribed them as LTS processes and composed the data chan-
nel in parallel with the transmitting process and the acknow-
ledgment channel with the receiving process. (See [7]).

According to the RLC protocol specification, the RLC
connection is released when the protocol receives a discon-
necting message from the user, i.e. from the upper layer. We
can assume, that when a virtual radio link is released and
then soon afterwards a new one is established, the channel
is empty for the new connection. Thus no old PDUs ad-
dressed for the old released process are routed to the newly
created one. This is because in the implementations process
deletion and creation are dynamic actions and collisions
between the process ID’s are quite rare. Also the routing
of messages in software systems is usually based on pro-
cess ID’s. In our model the channel components were not
synchronizing with the disconnecting messages sent by the
user and separate "channel release"messages were not gen-
erated either. So, when the RLC connection was released

and the transmitting and receiving processes were killed,
the underlying media tried to go on without knowing about
the interruption. This caused several error cases with the
routing of messages and the synchronizing actions. We ex-
tended the disconnecting message to concern also the chan-
nel components. We inserted the disconnecting messages to
the set of the synchronizing actions for both of the channel
components and also the necessary transitions to the LTSs
to create the desired functionality. As a result the size of the
state space of the protocol LTS was decreased remarkably.

5.2.2 Faulty testing strategy

Another error situation occurred due to a faulty testing
strategy. After giving an input the tester was waiting for
all possible outputs that the IUT was able to generate. As
a consequence, every time also all of the timer expirations
were enabled and thus no data was going through the pro-
tocol. We changed the testing strategy so that the choice
over giving a new input to the IUT or waiting more out-
puts from it is done nondeterministically and using carefully
chosen probabilities.

5.2.3 Errors in the implementation model

We also found some functional errors in our model, which is
one possible implementation from the standardized protocol
specification. According to the specification,data confirm-
ation primitivesfor the user are optional. The user defines,
when giving the SDU to be delivered, whether this SDU
should be confirmed or not. We did not include the con-
firmation mechanism into our first model. However, when
the transmitting window was full, our protocol refused to
accept any new data from the user. No buffering of SDUs or
specific "SDU refusal"messages for the user were included
into our model. These functional properties together led to
a situation where the tester should have been able to guess
the exactly right moment to send more data to the protocol.
As we want to assume the upper layer to be as simple as
possible, we inserted the data confirmation primitives to the
model.

Now we met another problem: Data confirmation primit-
ives are good for acknowledging the successfully delivered
SDUs, but the user should also be informed when the pro-
tocol fails to deliver an SDU over the radio interface. Since
the only parameter defined for the data confirmation prim-
itive is the ID for the SDU, the negative acknowledgments
shall be passed to the user with some other primitive. We
used the status primitive for this. The specification defines
one parameter for status primitive, the event code, which
we can then enlarge by rich typing. We used the status
primitive also for informing the user about unrecoverable
protocol errors, such as data link loss, and for recoverable

protocol errors, such as successfully executed reset proced-
ure. Status primitive can also be used to optimize the usage
of radio resources by informing the upper layers about an
unused radio link. We implemented this in our model with
a timer for receiving any data in the receiving side.

5.2.4 Errors in the high-level specification

We started the testing with "first-thought"high-level spe-
cification consisting of 4 states and 8 transitions. The
specification described mainly only the basic data transfer
scenarios and some trivial error cases that can be easily en-
visaged. As the testing proceeded, we continually run into
situations where the errors found reflected deficiencies in
the specification. We found several cases, especially error
cases, for which the specification did not define the desired
behaviour at all. We corrected and augmented the specific-
ation and as a result the specification evolved to be more
extensive and precise. At the moment the state space of the
high-level specification is more than two-fold compared to
the "first-thought"specification.

The testing is not yet complete, since even this kind of
a simple model of the protocol is complex. Also, the spe-
cification intentionally leaves several possible ways of im-
plementing the protocol open. Although this is necessary
to enable the competition on the markets, it makes it very
difficult to find errors in the protocol specification. In many
cases it is a matter of interpretation whether the errors found
in protocol testing are model specific or in the actual spe-
cification. Especially the deficiencies and inadequacies in
the protocol specification are difficult to discern and to jus-
tify in contributions. Usually they are considered just to be
implementation specific or protocol stack internal matters.

6 Summary and Conclusions

We have developed a new testing method, which lies
between conventional testing and verification by model-
checking. We call this methodexploration testing. This
method is relatively easy to use and understand, more com-
parable to testing than formal verification.

Exploration testing does not have the thoroughness of
model-checking, but it tends to test for a large number of
properties instead of some formally specified safety and/or
liveness formulas, as in conventional verification. The
method does give some indication of test coverage, but it
is not very easy to guarantee that some particular special
case has been covered.

Exploration testing is also applicable to partial system
models at an early stage of development as well as a final
implementation. According to our experience, this method
also supports incremental development and debugging quite

nicely. The main application area we have been experi-
menting with is telecommunication protocols. We presen-
ted an extensive case study where we recover several differ-
ent types of errors in a mobile telecommunication protocol.

Acknowledgments

This research is part of the RATE-project, which studies
automated testing of reactive systems. The work was fun-
ded by the National Technology Agency of Finland (Tekes)
and also by Nokia Research Center. The authors wish to
thank professor Antti Valmari for encouragement and ideas.

References

[1] Jari Arkko. Conformance Test Generation from Non-
determinis tic Specifications. Licenciate thesis, Hel-
sinki University of Technology, 1995.

[2] René G. de Vries and Jan Tretmans. On-the-fly con-
formance testing using SPIN.International Journal
on Software Tools for Technology Transfer, 2(4):382–
393, 2000.

[3] H. Holma and A. Toskala.WCDMA for UMTS, Ra-
dio Access For Third Generation Mobile Communica-
tions. Wiley & Sons Ltd, England, 2000.

[4] Conformance testing methodology and framework
– part 3: The tree and tabular combined notation
(TTCN). International Standard ISO/IEC 9646-3, In-
ternational Standards Organization, 1998.

[5] Paul Jorgensen.Software Testing: A Craftsman’s ap-
proach. CRC Press, 1995.

[6] David Lee, Krishan K. Sabnani, David M. Kristol,
and Sanjoy Paul. Conformance testing of protocols
specified as communicating finite state machines — a
guided random walk based approach.IEEE Transac-
tions on Communications, 44(5), 1996.

[7] Sari Leppänen and Matti Luukkainen. Compositional
verification of a third generation mobile communic-
ation protocol. InProc. International Workshop on
Distributed System Validation and Verification. IEEE,
2000.

[8] Brian Marick. The Craft of Software Testing : Sub-
system Testing including Object-based and Object-
oriented testing. Prentice-Hall, 1995.

[9] Glenford J. Myers.The Art of Software Testing. John
Wiley & Sons, 1979.

[10] T. Ojanperä and R Prasad.Wideband CDMA for Third
Generation Mobile Communications. Artech House
Publishers, 1998.

[11] 3rd Generation Partnership Project. RLC protocol
specification. Technical Specification 3G TS 25.322
V3.2.0, Technical Specification Group Radio Access
Network, 2000.

[12] J. Tretmans. A Formal Approach to Conformance
Testing. PhD thesis, University of Twente, December
1992.

[13] J. Tretmans. Test generation with inputs, output and
repetitive quiescence.Software – Concepts and Tools,
17:103–120, 1996. Also published as CTIT Technical
report 96-23, University of Twente.

[14] Pierre Wolper. Expressing interesting properties of
programs in propositional temporal logic. InCon-
ference Record of the Thirteenth Annual ACM Sym-
posium on Principles of Programming Languages,
pages 184–193. ACM, ACM, January 1986.

