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This research report describes a model-driven design method for protocol engineering. It is a method that covers all 
phases from pre-standardization to final implementation. Modelling is service-oriented and based on the ideas of 
compositionality and externally observable behaviour, used also e.g. in [8][9], and refinement. In this paper, UML 2.0 is 
used as a modelling language. Many of the protocol specific basic concepts used in the methodology have already 
been described in [7]. 

The design process consists of four phases: Service Specification, Service Decomposition, Service Distribution and 
Implementation. Figure 1 roughly illustrates the design flow through the phases. The key idea is to derive the final 
implementation by refining step-by-step the executable service requirement model. Traceability between the models 
is supported by the well-defined workflow and tested with exhaustive simulation of the models. In the following 
paper, a detailed description will be given of each work phase with clarifying examples. 
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Figure 1: Model-driven design flow 
 



 

The Service Specification  phase describes the service provided by the system and the requirements set for the 
functionality. Functional requirements are modelled as a finite state machine, which also enables simulation. Non-
functional requirements are documented separately. At this stage, the system implementing the service is regarded as 
a ‘black box’.  

The Service Decomposition  phase provides a step-by-step breakdown of the service. From the top-down, it separates 
the service into smaller parts, i.e. service components. On various abstraction levels, decomposition produces several 
transparent views to the internal architecture of the system.  

In the Service Distribu tion phase the service components are distributed over a given network architecture. The 
modularity of the model allows several distribution models and configurations of the system. Composition is used to 
encapsulate, from the bottom-up, the distributed functionality and, therefore, to define the modular internal 
architecture of the system. 

Finally, in the Implementation phase the service component is integrated with the target platform and the code 
generated automatically. 

Figure 2 roughly illustrates the idea of using decomposition and composition techniques in refining the service 
description to a system implementation. An extended, or ‘stretched’, design methodology covers all phases from 
service specification to a full implementation. Various groups of people participate in the different phases. For 
example, in protocol engineering the design methodology covers phases from pre-standardization to implementation. 
The Service Specification phase is related to stage 1 in the standardization process described in [4]. The Service 
Decomposition phase contributes mainly to standardization stage 2 and Service Distribution to stages 2 and 3. 
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Figure 2: Composition, decomposition and refinement in the design flow 

The following paper will provide a more detailed description of the phases of this methodology. In each phase, the 
class definitions, interface definitions, internal architecture description and behaviour specification are described. 
Along with the methodology description, a case study, in which a Third Generation Partnership Project (3GPP) wireless 
communication protocol is modelled according to the main principles of our method, is used as an example. The 
protocol, Position Calculation Application Part (PCAP), is part of the User Equipment (UE) positioning system in the 
radio access network. PCAP is specified to manage the communication between the Radio Network Controller (RNC) 
and the Stand-alone Assisted Global Positioning System Serving Mobile Location Center (SAS) network elements (see 
Figure 3). The functional requirements for the RNC-SAS communication are specified in [1]. The PCAP specification [2] 
defines the Iupc interface and the corresponding signalling procedures, i.e. the functional description of the 
communication protocol.  
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Figure 3: UMTS Network Architecture related to Position Calculation 

 

1. SERVICE SPECIFICATION 

Service

Service specification

 

The Service Specification phase specifies the functional requirements of the service with an executable state machine. 
The functional requirements are satisfied by a valid externally observable behaviour of the system. Signal exchange on 
various external interfaces of the system represents the externally observable behaviour of the system. By defining the 
correct execution order for these signal exchange actions, it’s possible to obtain the specification for the valid 
externally observable behaviour of the system, which can be described with a finite state machine.  

To be able to specify the behaviour it’s necessary to define the external interfaces with sets of signals and signal 
parameters. To identify the external interfaces of the system a domain model for the system and its environment was 
created.  

1.1 Concepts 

In the Concepts definition work phase, the basic concepts used throughout the design process are identified and 
named. The paper takes the approach of a ‘s tretched’ design process, which covers steps from the requirement 
specification to a full implementation and therefore involves people with very different backgrounds and perspectives. 
This illustrates the importance of concept definition as a cornerstone, upon which the rest of the work can be built. 

Definitions include both the concepts specific for the design methodology and for the application area. Names and 
definitions for logical, structural and physical elements are fixed to increase the mutual understanding during the 
design process. In this model the application area is protocol engineering. The concepts are specified as UML 
stereotypes and are used later to clarify and increase the information content of various class diagrams. 



 

«Network element»  

A discrete telecommunications entity, which can be managed over a specific interface. 
Example: the Radio Network Controller (RNC) network element in a 3GPP system. [3] 

«User» 

An external entity that is not part of the system and uses the services provided by the 
system. Example: a person using a 3GPP system user equipment as a portable telephone. 
[3] 
 

«Service»  

A component of the portfolio of choices offered by service providers to a user, a 
functionality offered to a user. Example: positioning service, which can be used to 
locate a 3GPP system user equipment. [3] 

«Service Component» 

An independent piece of a service at any stage of decomposition. Components provide 
an abstraction and information hiding mechanism so that a component can be changed 
without requiring any changes to other components. Interaction between the modules 
is completely encapsulated by communication interfaces or (controlled) shared 
variables. Example: PCService component, part of the positioning service, encapsulates 
the interfaces and functionality concerning the requesting, reporting and termination of 
the position calculation operation.  

1.2 Classes in Service Specification 

This paper shows the modelling of entities that can receive asynchronous messages as active classes. Other concepts 
are modelled as passive classes. Entities, which are located outside of the modelled system, are specified as external 
classes. 

In the Service Specification model the Service is specified as an active class. Users of the Service are specified as 
external classes. In addition, the used services (external capabilities utilized to produce the service) are specified as 
external classes. Internal components of the Service, which are not to be implemented (e.g. databases and algorithm 
libraries), are specified as external classes.  

The defined classes are used to draw a domain model, where the existing information on the Service and its 
environment is described. The domain model is depicted with a class diagram, where the Service and relevant external 
entities appear as classes or stereotypes. The relationships between them are described using associations.  

Figure 4 illustrates the domain model of PCAPService. 



 

 

Figure 4: Domain model for the PCAP service 

 

1.3 Interfaces in Service Specification 

According to the UML definition, an interface is a structured classifier, which may not be instantiated. Instead, it is 
used for grouping a set of signals, which are used for communication by the class that implements the interface. A 
class that implements an interface is said to realize that interface, and therefore able to receive the signals declared 
in the interface. A class can also require interfaces enabling it to send signals to other active classes realizing the 
corresponding interfaces.  

A Service Interface is a communication point for bi-directional signal exchange between the system and its 
environment. The concept Service Interface contains both the required interfaces, where the system provides its 
services to the User Interfaces (Users) and the realized interfaces, where the system uses other services provided by 
external entities (Used Service Interfaces).  

Service Interfaces are used by the system providing the service for communication with the environment. Service 
Interfaces are external interfaces of the system. Through the signal exchange on the external interfaces part of the 
behaviour of the system becomes visible. This behaviour is called the externally observable behaviour of the system. 

During the Service Specification phase the actual interface definitions, i.e. signals and signal parameters, are first 
given for the Service Interfaces. To link the Service interfaces to the classes in the domain model, ports corresponding 
to the interface definitions in the classes are specified. Ports are named interaction points of an active class. They 
specify the realized interface of the class and the required interfaces from other classes.  

In the PCAP example, the external interfaces for the PCAPServices class are specified according to the information in 
the Domain Model diagram. Signals used in communication in the User Interface are grouped in the interface 
definitions I_UserToPCAP and I_PCAPToUser. Sets of signals grouped under the interface definitions 
I_AlgorithmToPCAP and I_PCAPToAlgorithm are used for communication on the Service Interface with the external 
entity containing the computation logic and algorithms for actual position calculation. The User Interface is 
instantiated as user_port and the Service Interface towards the position calculation entity as calculation_port.  

1.4 Architecture in Service Specification 

An architecture diagram defines the internal run-time structure of an active class in terms of other active classes. The 
architecture diagram specifies how UML objects are instantiated and used together to form a system or a part of a 
system.  

The Service class specified in the Service Specification phase does not have an internal structure. In order to define 
the service requirements on this level of abstraction it’s desirable to observe the system providing the service as a 
‘black box’ and hide all implementation specific details, including the internal structure of the system.  



 

The domain model can be considered an architecture description of the Service Specification phase. It describes the 
environment of the service, and thereby the structure of the service context. The domain model can be described 
either with a class diagram or with an architecture diagram. The domain model of the PCAP example is described as a 
class diagram in Figure 4. 

1.5 Behaviour in Serv ice Specification 

Communication on the external interfaces represents the externally observable behaviour of the system. The valid 
externally observable behaviour on the User Interfaces of the system providing the service satisfies the functional 
requirements set for the service. By specifying the valid externally observable behaviour as a finite state machine it’s 
possible to achieve an executable requirement specification for the service. Communication with the entities providing 
the used services and the other external entities is also described in the specification. 

The preceding work phase already defined the signals for the Service Interfaces. By defining now the correct execution 
order of the signals it’s possible to obtain the description of the valid behaviour for each Service Interface. Sequence 
diagrams can be used to sketch the signal exchanges for various use cases; both for the normal cases and for various 
error cases.  

In Figure 5, the Model view on the left shows Sequence diagrams for the normal case, PC success, and for two error 
cases. PC PCAP error describes an error case due to a protocol error and PC calculation error describes a scenario 
where an error occurs in the actual position calculation functionality, external to the system.  

 

Figure 5: Scenario in case of successful Position Calculation 

Based on the sequence diagrams it’s possible to formulate one or several state machines to describe the behaviour on 
the Service interfaces. We can, for example, specify in separate state machines part of the requirements concerning 
signalling in one use case on one interface. For example, Figure 5 could be used as basis to describe two state 
machines: the functionality of the PC success use case on both Service Interfaces. Figure 6 presents part of the Service 



 

Specification state machine for the User Interface, instantiated with the user_port (see chapter 1.3). The ‘big’ state 
machine, describing the service requirements as a whole, can be composed from these ‘small’ ones. 

Due to the high abstraction level of the model hiding all implementation specific details, nondeterminism is quite 
inevitable in the model. Nondeterministic choices can be resolved with interactive simulation or, in case of automatic 
execution of the model, with constants or variables together with randomised value generators. Figure 6 illustrates an 
example of using non-determinism in a state machine.  

 

Figure 6: A non-deterministic behaviour in Service Specification 

 

1.6 Executable specification in Service Specification 

A remarkable strength of our design methodology is the executability of the models. The ability to execute the models 
on various abstraction levels enables, for example, testing of new ideas and proposals within the standardization 
work. Executability enables also validation and evaluation of the core functionality. 

For simulation and testing purposes an appropriate configuration of the system is defined. From the ports defined for 
the Service class we choose the ones we want to observe and include them into our configuration. Simulation can be 
run either interactively or automatically. For automatic simulation, e.g. for verification purposes, separate user and 
monitoring processes can be defined and connected to the instantiated ports of the system. Automatic handling of 
test inputs and outputs enables more exhaustive simulation, increasing the confidence in the reliability of the system. 

Figure 7 presents the configuration for the interactive simulation of PCAP Service with both Service Interfaces. 



 

 

Figure 7: Configuration of executable Service Specification 
2. SERVICE DECOMPOSITION 
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In the Service Decomposition phase the logical functionality implementing the required service is recursively 
decomposed into smaller service components. Decomposition  proceeds in top-down manner. Each service component 
is characterized and notes regarding rational distribution (e.g. according to the relationships to other services) are 
made on them.  

The Service Decomposition model represents several views of the internal architecture of the system on various 
abstraction levels. The ultimate aim is to produce a set of smaller models – service components – each of which 
encapsulates a logically consistent functional unit. Decomposition enables the usage of different distribution models 
for various network architectures. Additionally, decomposition enables the flexible definition of several system 
configurations and, providing a well-defined modularisation of the system is to be implemented, also efficient 
planning for resource allocation.  

2.1 Classes in Service Decomposition 

In the Service Decomposition phase classes are defined for the service components arising from the decomposition of 
the service. Later, port definitions are attached according to the interfaces defined for the service component and the 
state machine describing the externally observable behaviour of the service component to these classes.  

Decomposition is a recursive procedure starting from the service class specified in the Service Specification model. The 
decomposition procedure results in a decomposition tree, where each node corresponds to a service component, a 
logically consistent functional unit. Service components are represented by classes to encapsulate the definitions of 



 

external interfaces and externally observable behaviour of a service component. The root of the decomposition tree is 
the service class specified in the Service Specification model. When the node on depth n represents a black-box view 
of a service module, the transparent view of the same element is represented by a set of nodes on depth n+1. The 
leaves of the decomposition tree are the smallest functional elements (e.g. procedures), which can, within reason, be 
encapsulated as separate units. 

The PCAPServices class is the root of the decomposition tree. In the Service Specification phase the external interfaces 
and the behaviour are defined for the PCAPService class. At this stage, the PCAPService  class is decomposed into two 
functional entities and creates the corresponding class definitions. The PCService class contains the functionality 
related to the actual position calculation process. The IEService  contains the functionality related to the transmission 
of additional information needed in the actual position calculation process. 

2.2 Interfaces in Service Decomposition 

The external interfaces of the service components are formed and specified according to the functional service 
decomposition. This usually means no introduction of new definitions, but mainly the regrouping of the existing signal 
definitions. 

A step in the decomposition process reveals the internal structure of a service component. A step in the 
decomposition process also divides the external interfaces into several parts and turns internal, invisible interfaces of 
a service component into external, visible interfaces of the contained service components. In the decomposition tree 
part of the internal, non-visible interfaces on depth n are external, visible interfaces on depth n+1. 

In the Service Decomposition phase all the internal interfaces of the system providing the service are defined. An 
internal interface is not visible as a port instance in the class symbol of a service component. Instead, in the 
architecture diagram, which describes the internal structure of the service component, the internal interfaces are 
visible through port instantiations of parts and connectors between the ports. The external interfaces of the service 
component appear as port instances on the outer borders of the architecture diagram and they are connected to the 
internal interfaces.  

When a service component is decomposed into smaller service components and a class is defined for each component, 
the external interfaces begin to be decomposed. Within the port definitions of the smaller service components is 
specified which part of the external interface of the original service component is implemented by the service 
component concerned. Next the internal structure of the decomposed service component is defined in an architecture 
diagram. If there is need for interaction between the internal components, the corresponding internal interfaces have 
to be defined at this stage. An elementary requirement for compositionality and for ‘pure’ modularity is the clear 
encapsulation of interactions between the components. Interactions between the components here are allowed only 
through signal exchange. 

In the PCAP example the PCService component and the IEService component do not have mutual communication, so 
the decomposition does not create the need for new internal interface definitions. The external interfaces specified in 
the Service Specification phase are divided according to the functional decomposition (see Figure 9). Figure 8 
describes the PCService specific part of the User Interface. The user_port and calculation_port of PCAPService is also 
decomposed to the PC specific part and IE specific part correspondingly and attached to the PCService class and 
IEService  class.  



 

 

Figure 8: User Interface definition for PCService component 

 
2.3 Architecture in Service Decomposition 

An architecture diagram defines the internal structure of a decomposed service component in terms of other service 
components. In the Service Decomposition phase several architecture diagrams are usually produced, at least one for 
each decomposition level.  

The architecture diagram instantiates as parts the classes defined for the smaller service components composing the 
original service component. To each part ports are attached realizing and requiring the signals defined for both 
external (part-to-environment) and internal (part-to-part) communication.  

Interfaces are visible through ports defined for the parts and the connectors between the ports. A connector specifies 
a medium that enables internal and external communication. Connectors can visualize communication paths 
intuitively, but may also be omitted. The mandatory requirement for establishing the communication is that the 
required - realizes definitions in the port definitions match consistently and completely inside an architecture 
diagram. A connector may be uni- or bidirectional and specifies the allowed signals for each direction. When the 
number of signals is large, it is more convenient to refer to an interface or define a signal list for each direction of the 
connector.  

The external interfaces of the decomposed service component appear as ports on the outer borders of the architecture 
diagram. Each of the external ports has to be connected to one or several internal ports. In case there are several 
internal ports corresponding to one external port, the composite signal set of the internal ports has to be equivalent 
to the set of signals defined for the external port. Ports related to internal communication are connected 
correspondingly.  

Figure 9 presents the internal architecture of the PCAPService consisting of the parts instantiating the classes 
PCService and IEService.  



 

 

Figure 9: internal architecture of the PCAPService 
2.4 Behaviour in Service Decomposition 

A step in the decomposition process turns part of the internal interfaces of a service component into external 
interfaces of the contained service components. Therefore part of the internal behaviour of the decomposed service 
component turns into externally observable behaviour of the contained service components.  

The main principle of this design methodology is that in the modelling phase only the externally observable behaviour 
is specified. The specification is refined, i.e. more of the ‘total’ behaviour is specified, as the decomposition proceeds 
revealing new internal communication interfaces, and thereby creates the need for new behaviour specifications. The 
specification of the behaviour means essentially the definition of the order of exchanged signals, described in a state 
machine. 

In the Service Decomposition phase the behaviours of all service components are specified. In a decomposition step at 
least two new service components come into existence. First the behaviour is divided, i.e. the functionality, specified 
in the earlier phase for the decomposed service component according to the regrouping of the external signalling 
(interface definitions) and internal architecture definition (architecture definition). If the new service components 
arising from the decomposition have mutual communication and therefore new internal interfaces are specified, then 
the behaviour on these interfaces is defined and integrated to the other, existing behaviour specified earlier. In the 
same way as the behaviour was specified in the Service Specification phase, sequence diagrams can be used here in 
drafting the externally observable behaviour on separate interfaces of the service component. The behaviour of a 
service component can be specified either as many separate state machines, e.g. one for each interface, or as one 
extensive state machine integrating externally observable behaviour on all interfaces of one service component.  



 

In Figure 10 the sequence diagram for successful execution sequence of an IE procedure is presented. Repetition 
occurring as a self-loop in the final state machine is highlighted.  

 

Figure 10: Scenario in case of successful Information Exchange 

2.5 Executable specification in Service Decomposition 

For testing, separate simulation configurations, ‘test benches’, are designed for each service component. Once there is 
confidence in the correct functionality of a service component as a separate module in isolation, a new simulation 
configuration can be defined for integrating several service components to test their interactions and parallel 
functionality. 
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In the Service Distribution phase, the functionality of the system is adjusted to a given physical structure of a 
network. The distribution is based on the information of the network architecture and the service component 
produced in the Service Decomposition phase. According to the network architecture information the service 
components are located in various network elements and protocol layers. Decomposition, and thereby the modularity, 
supports different distribution models for various network architectures and also flexible configuration of the system. 

Structural elements, such as protocols, subprotocols and computational contexts, are specified by grouping the service 
components according to their location and functionality. In other words, the composition of service components in a 
bottom-up manner produces the structural elements.  



 

The PDU interfaces between communicating structural elements located in separate network elements are defined. 
New PDU interfaces bring forth new externally observable behaviour, which has to be defined and merged with the 
other behaviour of the structural elements.  

3.1 Classes in Service Distribution 

In the Service Decomposition phase the service components are decomposed into smaller service components in top-
down manner. The aim is to define small but still logically consistent functional units with well-defined interfaces.  

In the Service Distribution phase the previously defined service components are distributed over several physical 
network elements. In distribution, both the network architecture description and the Service Decomposition model are 
taken into account. The three main cases for distribution are as follows.  

The first and the most trivial case of distribution is that separate service components are located in different network 
elements. If there is no communication between the distributed service components, the distribution requires no 
further actions or definitions. A class is specified for each distributed service component in the Service Distribution 
model. No changes for the interface definitions are required. 

In the second case the separate service components communicate with each other and the signal exchange is 
encapsulated by the internal interfaces. In the distribution the interfaces they use for internal communication are 
‘opened up’ as a PDU interface. For example, in Figure 11 service components SC1 and SC2 have interaction and, after 
distribution, the internal interface between them is opened up as a PDU interface. Also in this case, a class is specified 
for each distributed service component to the Service Distribution model. Changes to the interface definitions are 
described later in the interface definition work phase. 

In the third and the most complicated case of distribution, a single service component is distributed over several 
network elements. The external interfaces, i.e. the Service Interfaces, of the service component are distributed 
according to the distribution of the functionality. A class is specified for each peer entity (a part of the distributed 
service component) in different network elements. New PDU interfaces are defined between the peer entities to 
enable interaction and peer-to-peer communication between the distributed parts of a service component. For 
example, in Figure 11 the functionality of the service component SC3 is distributed over the network elements NE2 
and NE3. Classes are specified for the peer entities SC3a and SC3b. A PDU interface is defined between the peer 
entities to enable interaction and thereby also the preservation of the total functionality of the distributed service 
component on the system level.  

The Service Distribution phase is the most challenging phase in the design flow and should be done with extra care 
and precision. Distribution is always case sensitive. Besides the main cases presented here, there are definitely also 
other cases. For example, a service component may be replicated in several network elements. 
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Figure 11: Service Distribution 

Grouping, or composition, of the distributed service components in a bottom-up manner produces structural elements, 
which are also defined as classes in the Service Distribution model. Composition, like the decomposition in the 
reversed direction, produces structural components on several abstraction levels. For example, if two service 
components inside one network element are in tight interaction and their procedures may even be executed in an 
interleaved manner, it is reasonable to merge these two into one computational context. Furthermore, all 
computational contexts participating in interactions between two network elements can be encapsulated into a 
subprotocol. A protocol consists of several subprotocols, and a layer consists of several protocols. The ultimate result 
will be a modular, well-defined description for the internal architecture of the distributed service. 

PCService and IEService components are distributed over the network architecture described in Figure 3. These service 
components are executed independently of each other, so they are specified as their own computational contexts. The 
computational context is always specified inside a network element, so the network element specific computational 
contexts of this system are named as SAS_PCService, RNC_PCService, SAS_IEService  and RNC_IEService. The 
subprotocols of the PCAP protocol, SAS_PCAP and RNC_PCAP, encapsulate all the computational contexts inside one 
network element.  

3.2 Interfaces in Service Distribution 

In the Service Distribution phase the functionality encapsulated by the service components is distributed. The 
distribution causes some changes to the interface definitions, mainly concerning the interfaces used for 
communication between the service components.  

In the simpler cases of distribution, separate service components are located to different network elements. If there is 
no communication between the distributed service components, the distribution does not require any changes to the 
interface definitions. In case there is communication between the distributed service components and the signal 
exchange is encapsulated by the internal interfaces, the internal interface is ‘opened up’, or made visible on the 
system level, as a PDU interface . PDU interface is an interface used for communication between service components in 
separate network elements.  



 

In the third case of distribution, a single service component is distributed over several network elements. The external 
Service Interfaces of the service component are distributed according to the distribution of the functionality. The 
distribution of the functionality produces peer entities located in separate network elements. To enable the necessary 
interaction by means of communication, it’s necessary to define new PDU interfaces between the peer entities. The 
signals for the PDU interfaces come from the behaviour specification. The PDU interfaces are grouped, or composed 
together, according to the composition of the structural elements so, that finally there is one PDU interface for one 
protocol.  

Figure 12 illustrates the interfaces of the distributed PCService component on the RNC network element side. The part 
of the User Interface, which is specific to the PCService component, is defined in the interfaces I_PC_UserToPCAP and 
I_PC_PCAPToUser. I_PC_SASToRNC and I_PC_RNCToSAS interfaces define the PDU communication of PCService. 
When I_PC_SASToRNC and I_PC_RNCToSAS interfaces are composed together with I_IE_SASToRNC and 
I_IE_RNCToSAS, the corresponding PDU interfaces of the IEService, this results in the I_SASToRNC and I_RNCToSAS 
interfaces, which define the PDU communication of the PCAP protocol. 

 

Figure 12: Interfaces of the distributed PCService 

3.3 Architecture in Service Distribution 

In the Service Decomposition model, the internal structures of the Service Components are described on various 
abstraction levels with architecture diagrams. In the Service Distribution model architecture diagrams are used to 
describe the internal structure of structural elements, i.e. subprotocols, protocols and layers, on various abstraction 
levels. In the architecture diagram the classes defining the smaller structural components composing the structural 
component concerned are instantiated as parts. Ports attach the interfaces specified earlier to the parts. Connectors 
can be used to visualize the point-to-point communication. As in the earlier phases, ports encapsulating the external 
interfaces of the structural element concerned have to be connected to the internal ports of the contained structural 
elements.  

Figure 13 describes the internal structure of the PCAP protocol on the RNC side. The PCAP protocol consists of two 
computational contexts: PCService  and IEService . In the PCAP example, the computational contexts could be called 
subprotocols as well, since there is no further structurisation . The user_port of the PCAP protocol, i.e. the class 
PCAPServices_RNC, is connected to the user_ports of the PCService  and IEService  encapsulating the computational 
context specific interfaces. Similarly, the peer_port of the PCAP protocol encapsulating the PDU interfaces is 
connected to the corresponding ports of the contained computational contexts.  



 

 

Figure 13: Internal structure of the PCAP protocol, RNC side 

 

3.4 Behaviour in Service Distribution 

In the Service Distribution phase, some of the behaviour defined in the Service Decomposition phase is split into 
several interacting parts. In the preceding class definition work phase, classes were specified for each computational 
context. Now, in the behaviour definition work phase, we describe the functionality of each computational context 
class with state machines. Since the corresponding computational contexts in different network elements use PDU 
communication to interact with each other, the state machines defined here are peer state machines with respect to 
the PDU communication. This means that the sending of a PDU in one state machine must have corresponding 
receiving action in its peer state machine.  

A computational context handles two different kind of communication, namely the ‘horizontal’ PDU communication 
and the ‘vertical’, in-stack communication with the users. The horizontal PDU communication is specified in the 
protocol standards to guarantee the interoperability of network elements of different manufacturers. The peer state 
machines for the PDU communication reside inside the same protocol, so they belong to the same specification 
domain. The vertical, in-stack communication is implementation-specific. The corresponding state machines for the 
vertical communication reside outside of the protocol entity. This split-level communication is presented with 
hierarchical state machines. 

A statechart diagram visualizes a state machine. There are two different styles of drawing statechart diagrams 
supported in Tau/Developer. The state-oriented view of a state machine gives a good overview of a complex state 
machine but is less practical when each transition contains more behaviour and when the behaviour must be 
described more explicitly (i.e. making a design in a state machine). For this reason, it is also possible to describe the 
state machine in a transition-oriented way, with explicit symbols for different actions that can be performed during 
the transition. These two styles are combined in the hierarchical state machine. The behaviour related to the 
horizontal PDU communication on the main level of the hierarchical state machine is described with the state-



 

oriented way. All the states on the main level are composite states, i.e. states composed by other states and 
transitions. The states are named according to the procedures defined for the computational context. Behind each 
composite state there is another state machine describing the ‘vertical’ communication with the user. This state 
machine is described in the transition-oriented way, since besides the stack-internal communication also all internal 
computation is included in this state machine.  

In the horizontal state machine, all transitions from one state to another are either reception of PDUs or sending of 
PDUs. In the vertical state machine, all transitions are correspondingly related to service primitives. The control switch 
between the horizontal and vertical state machines is handled with named entry and exit connection points. An entry 
connection point is a named starting point for entering a composite state and an exit connection point is a named 
exit point for leaving a composite state. Reception of a PDU in the horizontal state machine causes a control switch 
to the vertical state machine through a named entry connection point. Sending of a PDU in the horizontal state 
machine is triggered by a named exit from the current composite state of the vertical state machine. If the triggering 
event is specified for the composite state in the horizontal state machine then the transition will cause an exit of the 
composite state (and substates) for a new state in the horizontal state machine. This feature enables a flexible and 
easy way of defining the reception of special signals, e.g. exception or termination, in any state or in a certain set of 
states.  

In the PCAP example, the main level of the hierarchical state machine describes the behaviour of the IEService 
computational context (see Figure 14). On this main level state machine, the set of transitions consists of receptions 
and sendings of PDUs defined in the IEService  PDU interfaces. Figure 15 illustrates one state diagram for the vertical 
state machine behind the idle composite state.  

 

Figure 14: PDU state machine of the IEService class 
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Figure 15: Inside the ‘idle’ state  

3.5 Executable specification in Service Distribution 

With various configurations, it’s possible to simulate and test either the whole protocol implementation or the 
protocol peer entities separately. Additionally, simulation and testing can be performed observing only the chosen 
interfaces.  

Figure 16 presents the configuration for simulating the PCAP protocol, implementing the Iupc interface defined in [2]. 
In the simulation, it’s desirable to observe the user interfaces and therefore hide the PDU interface between the peer 
entities. 



 

 

Figure 16: Configuration of executable Service Distribution 

4. IMPLEMENTATION  
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Service implementation
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The goal of the Implementation phase is to produce the Implementation model, from which code can be automatically 
generated for the target platform. The phase can be divided into two subphases, a generic one and a target platform 
specific one. In the generic implementation subphase the Service distribution model is enriched with the missing 
functional features. The added features include support for several parallel communication sessions for computational 
contexts, realization of the virtual PDU communication between the peer entities in different network elements and 
error handling. In the target platform specific subphase target platform and configuration issues are taken into 
account. The following sections illustrate actions during the generic subphase. 

4.1 Classes in Implementation 

The active computational context classes, specified in the Service Distribution phase, are used as basis for the 
computational context implementation  classes. These classes encapsulate the computation and algorithms related to 
the actual functionality of the protocol, i.e. producing the service provided by the protocol.  

In order to make it possible to have several concurrent communication sessions each having its own computational 
context instance the Master-Slave pattern is applied [5]. A computational context implementation class acts as a 
worker. Worker class instances are created and terminated independently of each other. A worker is active only during 



 

the lifetime of a communication session. A master creates new worker instances whenever needed and keeps a record 
of active workers. 

In the earlier specification phases the identification of a message receiver plays no important role. When a message is 
sent, its route to another protocol entity is determined from the message routes in a model. Now, routing 
functionality is required because there can be several active instances of the same class simultaneously. The 
functionality determines the proper receiver for an incoming message. Here, the Message-Broker pattern is applied. In 
this example, it is applied twice. In the first, routing functionality determines the type of the computational context, 
PC or IE, and in the second one, the worker instance within the type. 

PDUs cannot just be sent from a protocol entity to the peer entity because there is no real direct physical peer-to-
peer communication path between the two protocol entities. Therefore, the computational contexts in different 
network elements have to use another service, which provides a transparent data transmission service between the 
network elements. It’s necessary to realize the virtual PDU communication on top of the existing lower layer service, 
and at the same time, it’s desirable to preserve the notion of PDU communication in the worker classes. Application of 
the Codec pattern (aka Peer-Proxy) provides a solution [6]. A peer-proxy serves as a proxy for a peer entity. It 
intercepts the outgoing PDUs sent by a worker and encodes them producing byte strings. The encoded byte strings are 
then sent using the lower layer data transmission service. In case of an incoming PDU, the peer-proxy receives the 
incoming lower layer data service primitive and then decodes the contained PDU. Finally it sends the decoded PDU to 
the appropriate worker. 

In this example, the computational context specific master, message-broker and peer-proxy functionalities have been 
combined into two classes, namely PC_RED and IE_RED (Routing-Encoding-Decoding). In addition, there are two 
subprotocols within the PCAP protocol (PC and IE) and implementation for the subprotocols should be kept as 
separate as possible. Computation context type specific routing (i.e. whether a message is a PC message or an IE 
message) is separated from PC RED and IE RED into the MUX class because routing is based only on information in 
messages. The need for the MUX class arises from the fact that there is only one service access point for the PCAP 
protocol. If there were two separate specific service access points for PC and IE subprotocols then the functionality of 
the MUX class would just be routing of incoming lower layer service primitives. 

  

An example of one possible system architecture is illustrated in Figure 17: A system architecture.  
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Figure 17: A system architecture 

4.2 Interfaces in Implementation 

To facilitate real communication between protocol entities located in different network elements the Codec pattern is 
applied (see 4.1 above). As a result, a peer-proxy needs to communicate with a lower protocol layer providing a data 
transmission service. This protocol layer has to use the provided service interface of a lower protocol layer. 

For the computational contexts the PDU interfaces have been defined in the preceding phase. To enable the virtual 
PDU communication with the peer-proxy functionality, the peer PDU interface of each computational context is 
defined to the corresponding peer-proxy entity.  

The service primitives exchanged with the underlying data transmission service carry the PDUs from a protocol entity 
in one network element to another protocol entity in another network element. The routing of messages is 
multilayered through using the RED and MUX entities. Therefore, usually the service primitive interface visible from 
the protocol entity to the environment is decomposed into several ‘sub-interfaces’ of RED and MUX entities inside the 
protocol entity. In Figure 17 the outermost service primitive interface is decomposed first into service primitive 
interfaces of the subprotocols and then further into service primitive interfaces specific for each computational 
context.  

Figure 18 illustrates the PC_RED class and the interfaces defined for the class. All incoming messages are received via 
mux_port. The pc_port is used for PC service primitive exchange and peer_proxy_port is used for PDU exchange. 
Encoded outgoing PDUs are sent via the sctp_port in an SCTP service primitive. 



 

 

Figure 18: The PC_RED class 

4.3 Architecture in Implementation 

The architecture diagram describes the system configuration for automatic code generation. The classes defining the 
functional components are instantiated as parts. The interfaces between the classes are instantiated through the port 
instances defined for each part, and the communication between the ports is illustrated using connectors. Also the 
external interfaces are represented in the diagram.  

Figure 19 illustrates the internal architecture of the PCAPServices. Only the PCService component and computational 
context are included in this Implementation model.  



 

 

Figure 19: An implementation architecture 

4.4 Behaviour in Implementation 

The majority of the behaviour of the computational context has been defined already in the Service Distribution 
phase. In the Implementation phase the Master-Worker pattern is applied (see 4.1). As a result, the lifetime of a 
computational context instance is only one communication session. A worker is created, is active and finally 
determines to terminate itself. The behaviour of the RED and MUX entities shall be specified together with the details 
that were left vague in the Service Distribution phase. 

Figure 20 shows how the behaviou r of a PCService class is augmented with dynamic aspects (object termination) and 
with error handling behaviour (timer). Figure 21 shows how PC_RED reacts when it receives the PC_req service 
primitive. The basic control flow looks the same as in the Service Distribution phase but details are added. The actual 
implementation details are hidden in the operators. 



 

 

Figure 20: The state machine of the PCService class 

 

Figure 21: A part of the state machine of the PC_RED class 

5. CONCLUSION 

This paper has described a model-driven design method for protocol engineering, where a high-level requirement 
specification is refined step-by-step into a fully detailed implementation model. The high-level requirement model 
presents the functional requirements for the valid behaviour of the system as an executable finite state machine. The 
internal architecture of the functionality (or the behaviour), i.e. the software implementing the system, is described 
with service components. The interaction between the service components is encapsulated with well-defined 
interfaces. The behaviour of each service component is described with a finite state machine, and is refined step-by-
step from a high-level, nondeterministic description into a detailed implementation model. Executable code for the 
target platform is generated automatically from the implementation model. In the refinement chain the tracebility 
between the models is validated with exhaustive simulation. The externally observable behaviour on each interface 



 

should remain the same throughout the refinement chain. In practice, the signal definitions of various interfaces are 
updated every once in a while, which has to be taken into account as a maintenance issue for the refined interfaces. 

This method aims at improving the productivity of the design process and the quality of the software produced in it. 
Models on various abstraction levels enable evaluation of the basic ideas by simulation and provide fill-in skeletons 
for the subsequent models in the refinement chain. Analysing the core algorithms in very early design phases reduces 
costs and improves the software quality from the very beginning of the design process. Modularity enables reasonable 
and efficient resource allocation and supports maintenance and re-usability of the software components. 
Encapsulating the heuristics used in the design process and describing them as design patterns stabilizes various 
phases of the process and makes them repeatable. 

Raising the abstraction level of the design work, i.e. moving from the implementation languages to specification and 
modelling languages, enables greater problem solving. The designer can concentrate on the essential - on the problem 
to be solved by her/his code.  



 

APPENDIX I: BACKROUNDER ON UML 2.0 

The Unified Modeling Language (UML) has enjoyed spectacular success since it was first standardized in 1997. It 
represents the end of the modeling wars and is being used across the board within the software industry. Initially, it 
was created to be a language for ‘specifying, constructing, visualizing, and documenting the artifacts of a software-
intensive system’.  

During the five years since the standard was created, tool vendors and users have gained much experience with the 
language, and have learned to distinguish the most effective elements of the language from those parts which have 
not lived up to expectations. As tools implement new features that are not in the standard, users expect these 
features to be made part of the standard. A typical example of such a feature is executability of models, which 
enables early verification of system functionality without having to delve into application code.  

Within the software business, five years is an eternity so it’s no surprise that new software trends have outgrown the 
capabilities of UML. In particular, the area of component-based development has caused problems for UML modelers; 
it has not been clear how to deal with component-frameworks such as COM+ and EJB, and also how to deal with the 
style of hierarchical decomposition of building blocks that typically occur in embedded systems development.  

Two years ago, the OMG initiated the work on creating UML 2.0 – a new major revision of the most popular modeling 
language around – to take these and many other concerns into account. We are now starting to see the outcome of 
this work, and some of the new capabilities are described below (based on the UML 2.0 submission by the U2 Partners 
[10]). 

In this research report, we have examined how to make use of these capabilities in practice as part of a case study on 
protocol engineering. The tool used in the case study is Telelogic Tau/Developer, which implements many of the 
described UML 2.0 features, including the capability to execute models. 

A.1 Active and Passive Classes 

Classes are easily the most widely recognized concept of UML. In the major revision, a great deal of effort has gone 
into making them more suitable for development of large-scale systems. This means that they are more adapted to 
the kind of component-based development that typically occurs within embedded systems development, and it also 
means they are more suitable to model component-based frameworks such as EJB and COM+. 

For these kinds of systems, subsystems are often distributed in a network and execute concurrently with each other. In 
other words, each subsystem can be viewed as a system in its own right. In such systems, it is often beneficial to 
distinguish between active  and passive classes, where active classes tend to describe the logical architecture of the 
system, while passive classes are used for describing data structures. Notationally, an active class uses the same 
notation as an ordinary class, but with vertical bars on the side (such as the active class VendingMachine as shown in 
Figure 22). Active classes run in threads of their own (i.e. are scheduled) while a passive class must be executed in the 
context of other classes, such as an active class. (The main function of a C or C++ program corresponds to the 
behavior of an active class representing the entire program, which in turn is normally scheduled by the operating 
system.) 

It should be noted that active classes tend to have mostly receptions, i.e., the ability to receive asynchronous signals, 
rather than operations. Conversely, a passive class tends to have mostly synchronous operations. In particular for 
embedded systems, the use of active classes is predominant. 

In order to deal with the complexity of developing large components concurrently in distributed teams, the use of 
clear interfaces between the different parts is imperative. In essence, each such component is treated as a building 
block that can then be put together with each other in specific ways. 



 

A.2 Provided and Required Interfaces 

Interface-based design has become increasingly important in modern software development, and many programming 
languages have incorporated the interface concept. Users want to be able to develop each part as a standalone entity 
that is independent of the other parts of the systems; for this to work it is necessary to express the contract between 
each part and its environment. In order to facilitate modeling of this, UML distinguishes be tween provided and 
required interfaces. A provided interface is represented by the traditional lollipop symbol and describes the services 
that a class implements, and a required interface describes the services that the class expects others to fulfill. 
Notationally, the required interface is very similar to the lollipop, except that the circle is replaced by a half-circle. 

Note that a provided interface is shorthand for a class realizing an interface, while a required interface is shorthand 
for a class using an interface, i.e., it is also possible to model these interfaces using explicit relationships between the 
class and its interfaces. From the perspective of the class, it is not important to know which other building blocks are 
going to provide the functionality of its required interfaces; the services can be provided by anyone (not necessarily a 
class) that somehow realizes the required interfaces. 
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Figure 22: Provided and required interfaces 

In Figure 22, a small example of an active class VendingMachine is shown. Here we see examples of both provided 
interfaces (ISelector and ISlot) and required interfaces (IDisplay and IDispenser). This class is viewed as a black box, 
and at this point, we cannot explain too much about its implementation; however, we know enough to be able to use 
the class, since the interfaces give the services that are required and provided. It is useful to couple this with 
information about how to use the interfaces, which can be done for example through sequence diagrams or protocol 
state machines. Either of these may be used to describe how messages are interchanged, and the order in which 
services may be invoked. The squares that are shown on the class are ports, which we will examine more closely in the 
next section. 

Provided and required interfaces allow you to describe contracts between classes, in which case only classes with 
matching interfaces should be allowed to communicate with each other. The interfaces match if they are either of the 
same kind, or one interface is a subclass of the other. 

A.3 Ports 

The port has several different but related purposes. First, it can be used to group interfaces that have related 
functionality; in this regard it provides a view of the class that can be separately addressed. Secondly, a port acts as 
an interaction point, through which different classes can be connected together as parts of internal structures.  

In most cases, you are only allowed to access the services of a class that has ports through its ports. The ports then 
act as holes in the shell of the class encapsulation through which it is possible to send or receive messages. 
Operations or attributes of such classes are not public; services of the class can on ly be accessed through the provided 
interfaces of the class. In Figure 22, the class has three ports; the top one is named pM, and has one required and one 
provided interface. In this case, communication over the port is bi-directional. In general, a port can be associated 



 

with any number of required and provided interfaces. The other two ports each have a single interface; one is a 
required interface (IDispenser) and the other is a providee interface (ISlot). These ports only support unidirectional 
communication, which means that calls can be sent to a class with a provided interface and return values received. 
For a class with a required interface, calls can be sent from the class to anyone providing the interface and return 
values received.  

A.4 Internal Structure with Parts and Connectors 

Hierarchical decomposition is a powerful and commonly used mechanism for structuring large and complex systems. 
To some extent, this is covered in the discussion about interfaces: modularity is an essential factor when a project is 
too big for only a few persons. Each class is viewed as a modular building block, which may be further broken down 
into smaller building blocks. In other words, a class may delegate its behavior to other classes that are parts of its 
internal structure. Each of those classes can be further broken down, and the recursion bottoms out when the class at 
the finest level of granularity only has behavior and no internal structure. It is possible to build arbitrarily large 
systems in clear structures using this approach. 
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Figure 23: The internal structure of a class 

The internal structure of a class is essentially made up of parts and connectors between the parts. Each part 
represents a usage of a class in the context of the container class, and the same class can be used as part of various 
contexts (i.e., internal structures), as is shown in Figure 23. This corresponds to the internal structure of the class that 
was shown in Figure 22. It also shows how the ports are used as connection points for the connectors. A connector is 
essentially a contextual association, which is only valid within the context where it is used, and the connectors of an 
internal structure describe the valid communication paths of the shown portion of the system. The classes may be 
connected in other ways as parts of other internal structures. The parts, which are named store and ctrl, respectively, 
depend on the class definitions Dispenser and Controller, which are not shown in this picture. 

As the name implies, hierarchical decomposition relies on composition, and in Figure 24 the example from Figure 23 is 
shown using plain composition. These two views are complementary and express different information. The internal 
structure of a class only shows one layer of the composition hierarchy, and it is necessary to zoom into or out of the 
classes to look at other levels. Furthermore, the internal structure focuses on the communication between the 
different parts. In Figure 24, only the composite associations that are implied by Figure 23 are shown. This view is not 
very suitable to show the context specific information of an internal structure. The composition relationship between 
the classes implies that there are lifecycle dependencies between a container class and the parts of its internal 
structure; when a container class is created, then instances of the classes that are represented as parts are also 
created (depending on their multiplicities). Similarly, when an instance of a container class is deleted, then the 
instances that are represented as parts are also terminated. 
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 Figure 24: A composite structure  

Each class is viewed as a building block and, just as it is possible to break it down into smaller pieces, it is equally 
possible to reuse it in a larger context to create even larger building blocks. This is also a common way to deal with 
legacy systems, which are then represented as building blocks with given interfaces that often cannot be changed. 

A.5 Behavior Ports 

In the black box view, as covered in a previous section, there is no way of knowing whether the communication 
received at a port is handled directly by instances of the class, or if they are delegated to other classes as part of its 
internal structure. In the white box view as represented by an internal structure, you can specify that a message sent 
to a behavior port should not be delegated to a part, but rather be handled by the container class itself. This 
distinction between ports is hidden in the black box view since it represents an implementation aspect of the class 
that should not be exposed. A behavior port is shown using a small state symbol that is attached to the square 
representing the port. A behavior port that is drawn entirely inside the class boundary represents a port that can only 
be accessed from within the class (i.e., from parts in its internal structure). Examples of behavior ports are shown in 
Figure 25. 
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Figure 25: Behavior ports of a class 

The definition of the class Controller is shown to the left, while its internal structure is shown to the right. The 
behavior port is tied directly to the behavior of the container class, which may be expressed for example through a 
state machine, an activity, or an interaction. In this case, the container class Controller is responsible for creating and 
initializing instances of the CoinController. It has a protected behavior port that is only used to pass initialization 
information to the created instances, and this initialization port of the CoinController is not accessible from outside 
Controller. 

A.6 Behavior Descriptions 

So far, we have only covered the new structural aspects of UML 2.0. However, the language has been significantly 
revised on the behavioral side as well, and in particular interactions and activities have received a significant 
overhaul. It’s not necessary to study these new concepts in detail for this particular white paper. 



 

Despite their popularity, interactions are quite underrated in UML. They can be used throughout the development 
lifecycle, and are equally good at expressing requirements, functionality, and tests. In addition, they are easy to 
understand, even for someone who does not know UML. Figure 5 and Figure 10 are examples of simple interactions. 
Unfortunately, the capabilities of interactions in UML 1.x were too limited for them to be really useful when dealing 
with larger systems. The most significant changes in UML 2.0 include: 

• The ability to reference  other interactions from within a sequence diagram, thereby avoiding the necessity to 
duplicate information in multiple interactions. Using this approach it is possible to quickly put together new behaviors 
based on already existing ones, for example when creating test suites. 

• Expressing variations within sequence diagrams by enclosing one more messages with a frame; the variations 
include iterations, decisions, optionality, etc.; this reduces the number of sequence diagrams required to express 
functionality dramatically. 

• Decomposing a lifeline into a new interaction that express message flows between the parts of the object 
representing the decomposed lifeline. This capability allows you to zoom into and out of interactions in much the 
same way that you can with decomposed classes. 

State machines have not changed as much as other behaviors. The most significant change is probably the 
simplification of the metamodel (which is used to define the language), but this does not affect users much. However, 
it is now easier to define composite states, and these may also have entry and exit points. Such points work in much 
the same way as ports in that they disconnect the environment of the state from the internals of the state, and allow 
you to define specific points at which to enter or leave a state. As an example of a composite state, consider the Idle 
state in Figure 14, whose substates are shown in Figure 15. 

A.7 Actions 

Executable models is one of the catch-phrases of UML 2.0, and what makes it possible to execute models is the fact 
that actions have been specified to a level of granularity comparable with most programming languages. Note, 
however, that UML is not specified in such a way that it can immediately be used as a programming language; it is 
necessary to couple it with one or more profiles that close the different semantic variation points that give the 
language its flexibility, and it also helps to combine this with a data model having basic data types. Furthermore, such 
a profile should tie a concrete action syntax – notation – to the actions to make them accessible for most users, since 
the language itself provides no notation. 

Actions include for example assignments, calls, loops and decisions, and correspond quite well with what is known as 
statements in other languages. 

The actions that are defined were originally specified in the action semantics for the UML, which was a very late 
addition to UML 1.x, but have in UML 2.0 been integrated with activities to create a more homogeneous language. 
These actions can be used to describe the more detailed behavior of, for example, operations, state transitions or 
activities.  

The main advantage of executable models is that they provide the capability to verify the correctness of a system 
before any code is produced and find errors much earlier in the development lifecycle. An executable model can be 
simulated – debugged – and it is also possible to apply various verification and validation techniques to the model. 
Equally important is the fact that most of the code, if not all, can be automatically generated from a model once you 
are satisfied that it works correctly. This makes it possible to focus on defining the functionality in the model, and 
letting code generators worry about the code necessary for memory allocation, distribution, etc. 

Developing systems this way means that you will refocus your development efforts. Much more time will be spent 
during the analysis and design phases, where you will also be able to test your system repeatedly. At the same time, 
you reduce the time spent in implementation since most of the code is generated for you; the testing phase that 



 

normally follows the implementation phase is significantly reduced as much of the testing occurs earlier. Note that it 
is often quite expensive to find errors late in the development process, which means that there is a lot of time and 
money to be saved from being able to detect and fix bugs earlier. 

A.8 Model Driven Development 

Not all models have to be executable. In fact, most models that are created are not executable, and are there primarily 
to convey information between different stakeholders in a development process (i.e., to communicate intent). Most of 
the capabilities and flexibility of UML 1.x have been preserved in UML 2.0, but the language has been made more 
cohesive. At the same time, it has been extended to allow for better scalability when capturing the structure and 
behavior of larger systems, and for better precision when designing more detailed behavior.  

UML 2.0 is designed to be suitable all through a development project, allowing you to model requirements, analysis, 
design, implementation, and testing. The term model-driven development implies that a model is at the centre of 
development, and is used as the basis for application development. The fact that the entire system is captured in a 
model makes it more accessible to the project members and less dependent on key architects, and also makes it easier 
for new project members to be phased into a project. Furthermore, it puts the focus on the functionality of the system 
rather than on the code that will need to be produced. To get the real benefits of model-driven development, however, 
both executing models and code generation play important roles, as they provide the means to build better systems 
faster. 
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