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ABSTRACT 
 
A boundary element model is used to analyse a folded horn.  Results from the boundary element model are 
compared to measurements of the throat radiation impedance and the far-field acoustic response.  Further analysis 
shows how one-dimensional and lumped parameter models can be derived from the boundary element results, and 
used to gain insight into the behaviour of the folded horn loudspeaker system.  It is shown that one type of folded 
horn behaves more like a vented-box than a traditional horn-loaded loudspeaker system. 
 

1. Introduction 
The addition of a horn to a loudspeaker can greatly 
increase its efficiency.  The horn acts as a mechano-
acoustic transfer, increasing the effective impedance 
presented by air to a loudspeaker driver’s diaphragm.   
 
Traditional horns can be analysed with analytical or 
simple numerical tools.  Using these tools to analyse 
a folded horn, however, is complicated by the fact 
that the flare rate of the folded horn is not readily 
evident. For this reason, the boundary element 
method (BEM) has been used to analyse a simple 
folded horn in this paper.   
 
The BEM model has been used to calculate the 
radiation impedance and transfer impedance of the 
horn.  In combination with a lumped-parameter 
model of the loudspeaker driver, these results are 

used to simulate the acoustic pressure-to-voltage 
response of a complete folded-horn loudspeaker.  All 
simulation results are compared to measurement  
 
Analyses of BEM and measurement results give 
insight into the one-parameter behaviour of the 
folded horn under study.  It is found that lumped-
parameter models can capture dominant features of 
the horn’s radiation impedance and transfer 
impedance.  Analysis of this lumped parameter 
model shows that the folded horn under study affects 
the loudspeaker’s response more like that of a bass-
reflex enclosure than a traditional infinite-length 
horn. 

1.1. Simulation – general method 
The effect on the acoustic response of adding a horn 
to a loudspeaker is analysed in this paper by the 
following general method.  The loudspeaker’s 
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diaphragm is assumed to be rigid, i.e. it vibrates as a 
single lumped mass, with no higher-order modal 
behaviour.  This is the standard single-degree-of 
freedom model of the electrodynamic loudspeaker, as 
discussed by classical texts on loudspeakers.  This 
model may be presented as the dynamic system 
shown in Figure 1, after the form presented by 
Knudsen et al. [1]. 
 
This model may be used to simulate the ratio of 
acoustic pressure p1m(s) to input voltage vc(s).  
Within the context of this model, the addition of a 
horn to the loudspeaker affects the mechanical-
equivalent acoustic radiation impedance, or horn-
loading impedance Zrm (s), and the acoustic transfer 
impedance Ztf (s), highlighted in grey in Figure 1.  
This framework is generally similar to a method 
presented by Geddes and Clark [2].  Prediction of the 
effect of the acoustic horn, therefore, requires 
calculation of these two transfer functions. With 
these two transfer functions, the ratio of acoustic 
pressure to input voltage may be calculated from: 
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where the terms in (1) are as follows: 

)(spr  acoustic pressure at a distance r from the 
loudspeaker 

)(svc  voltage-drop across the ends of the voice-
coil 

)(sZeb  blocked electrical impedance; electrical 
input impedance of the loudspeaker under 
mechanically fixed conditions 

)(sZ mo  open-circuit mechanical impedance, 
including the effects of the rear-acoustic 
mounting of the loudspeaker. 

)(sZ rm  mechanical-equivalent acoustic radiation 
impedance presented by the horn to the 
loudspeaker 

)(sZtf  transfer impedance; ratio of diaphragm 
velocity to acoustic pressure pr(s) 

φ0 transduction coefficient (B·l product, or 
force factor) 

 
A wide range of methods may be used to calculate 
the horn-loading impedance and transfer impedance 
transfer functions.  The oldest method relies on an 
analytical solution to this one-dimensional wave 
equation with varying cross-sectional area: 
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where the terms in (2) are as follows: 

( )txp ,   acoustic pressure  
x distance along axis of symmetry of horn  
t time  
S(x)  flare rate, i.e. the cross-sectional area of 

horn as function of distance along axis of 
symmetry, x, as shown in Figure 2;  

c0 speed of sound 
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x

S x( )

Axis of symmetry
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Figure 2: Definition of the flare rate, S(x), for a horn. 
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Figure 1: Block diagram of dynamic system representation of the standard lumped-parameter model of the electrodynamic 
loudspeaker. 
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Equation (2) is commonly known among 
acousticians as ‘Webster’s horn equation,’ due to 
Webster’s 1919 publication describing how it can be 
used to analyse phonograph horns [3].  Hanna and 
Slepian later applied the same theory in 1924 [4] to 
horn-loaded loudspeakers, though these latter authors 
make no reference to Webster.  This parallel 
‘discovery’ of the usability of (2) for engineering 
analysis of the acoustic horn is somewhat explained 
by Edward Eisner’s 1964 discussion [5] on the 
history of (2), wherein Eisner notes it was first 
developed and solved for an acoustic horn in a paper 
published in 1764 by Daniel Bernoulli [6].  All this 
history aside, the reader interested in more detail on 
the development of (2) is referred to readily available 
basic textbooks on loudspeakers, e.g. Olson [7] or 
Beranek [8], among others. 
 
The primary limitation, from the point of view of a 
loudspeaker designer, to using analytical solutions to 
(2) for analysing horns is that such solutions are 
available for a limited number of horn flare rates.  
Specifically, as noted by Holland et al. [9], it can be 
solved only for cylindrical, conical, exponential, and 
hyperbolic flare rates, plus flare rates described as 
combinations between exponential hyperbolic rates 
(this being described by Salmon [10]). 
 
It was shown by Holland et al. [9] that a horn of 
arbitrary flare rate can be analysed by subdividing 
the horn into small sections of flare rate for which an 
analytical solution to (2) is available.  For example, 
one may ‘fit’ some arbitrary flare rate with short 
sections of cylindrical, conical, or exponential 
curves.  The input and transfer of impedances of each 
of these sections can be determined analytically from 
solutions to (2).  These may be collected together as a 
sectioned transmission line model of varying 
impedance, from which the total input and transfer 
impedance may be calculated.  Thus, with the aid of a 
computer with computational power not much more 
than that of a retractable pen, the complete electro-
acoustic response of a loudspeaker loaded with such 
a horn may be calculated in the context of Figure 1.    

1.2. Single parameter models 
Morse (1953) [11] explains that (2) is more generally 
applicable if the horn under investigation admits to a 
one-parameter (1P) wave, i.e. all the acoustic 
quantities can be defined by a single spatial 
coordinate. Although Morse admits the existence of 
exact one-parameter solutions to (2) for very few 
coordinate systems, he used the 1P assumption to 
develop approximate solutions to more complex 

shapes.  Putland (1993) [12] seems to be the first 
author to actually specify the only three coordinate 
systems that produce exact solutions for one 
parameter wavefields: planar (1-D), cylindrical (2-
D), and spherical (3-D).  Putland notes that these and 
only these coordinate systems are capable of exactly 
specifying all the acoustic quantities (pressure, 
particle velocity, intensity, etc.) by a single spatial 
coordinate.  Lack of this strict degree of 
mathematical exactness does not, however, seem to 
have prevented effective one-parameter analysis on a 
variety of more complicated horn geometries.  
 
It is explained by Holland et al. [9] that the effective 
cross-sectional area of a wave propagating through a 
horn will tend to be larger than would be predicted 
assuming plane-wave propagation.  Although the 
wave may exhibit one-parameter behaviour, and thus 
will be a solution to (2), the flare rate function S(x) 
will not follow the planar cross-sectional area of the 
horn.  The work of Holland et al. [9] suggests that 
actual wavefronts will be somewhere between planar 
and spherical in shape, suggesting a slight increase in 
the flare rate function S(x) over the planar flare rate, 
though no quantitative data is provided. 

1.3. Folded horns 
The lower limit of the range of usable frequencies of 
a horn is determined by the ratio of its length to flare 
rate.  For proper operation at low frequencies (down 
to some 50Hz), this requires horns of some five (5) 
metres in length.  Horns of such long length are 
impractical for the majority of loudspeaker 
applications.  Designers have circumvented this 
problem by ‘folding’ or bending the horn at one or 
more points along its length.  Perhaps the most 
famous (if not the first) such ‘folded horn’ was the 
‘Klipschorn’ described by Klipsch in 1944 [13].  
This type of ‘folded horn’ for low-frequency 
loudspeakers enjoyed some commercial success for 
domestic use.  More recently, other types of folded 
horns have become common in loudspeaker systems 
for sound reinforcement and large-scale public 
address.   
 
In the design process of a folded horn, using 
Equation (2) is complicated by one fact: It is 
considerably less obvious what the flare rate function 
S(x) should be from the horn’s geometry than for 
more traditional horns.  Consider the sectional view 
of the simple folded horn shown in Figure 3.  In 
contrast to the axisymmetric horn shown in Figure 2, 
it is at first not obvious where the effective axis of 
symmetry should be drawn, nor then clear what the 
effective area of the wavefront propagating through 
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the horn along such an axis would be.  A boundary 
element method simulation was performed to gain 
insight into this type of horn’s one-parameter 
behaviour. 
 
 

Axis
 of S

ym
metry?

Rear
cavity

 
Figure 3: Sectional view of a simple folded horn. 

 

1.4. Boundary Element Method 
The boundary element method (BEM) can be used to 
analyse the acoustic radiation characteristics of any 
arbitrarily shaped object.  Also known as the 
Integral-equation method, it uses a discretisation of 
the surface of an object and a set of velocity or 
pressure boundary conditions to calculate an acoustic 
field, either into a free-field, or into an enclosed 
space.  Brebbia (1991) [14] provides a well-known 
but somewhat out-of-datea review of boundary 
element theory for acoustics.   Wu (2001) [15] 
provides a more up-to-date review of BEM theory. 
 
There are two basic formulations of the BEM method: 

• Direct (collocational) method 
• Indirect variational method 

These two methods have a somewhat different 
theoretical formulation.  Functionally, the indirect 
method can simulate very thin structures without 
large element size, although it can have larger 
memory requirements and longer computational 
times than the direct method.  Due to the thin exterior 
walls of the folded horn under analysis in this paper, 
it was found that the indirect variational method was 
by far the more efficient of these two methods for 
this structure. 
 
All BEM computation reported in this paper was done 
using the commercial software package SYSNOISE, 
version 5.0.   

                                                           
a …as well as out-of-print… 

1.5. BEM simulations of a folded horn 
The mesh describing the folded horn under study 
used in the BEM model is shown in Figure 4 and 
Figure 5.  In Figure 5, elements on the top and side of 
the exterior surface of the mesh have been removed, 
to show the interior detail of the mesh.  
 
The mesh consists of about 1000 nodes and elements.  
Linear elements were used, i.e. one node per element 
edge.  Computation time was approximately 1 hour 
per frequency, using an Intel 486 66MHz based PC.b 
 
For scale, the overall size of the horn shown in  
Figure 4 and Figure 5 is approximately 0.45 × 0.75 × 
0.75 m. 
 

SYSNOISE - SYSTEM FOR ACOUSTIC ANALYSIS Scoop Version 1.0,,,

X

Y

Z

 
Figure 4: Complete mesh, exterior view. 

                                                           
b The simulation was performed in mid-1995.   
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SYSNOISE - SYSTEM FOR ACOUSTIC ANALYSIS Scoop Version 1.0,,,

X

Y

Z

 
Figure 5:  View from corner, with top & side elements 
removed, to show interior of mesh.  

 
 
As described above, the BEM model has been used to 
compute two aspects of the horn: 

• Acoustic radiation impedance 
• Transfer impedance 

In the boundary element model, those elements that 
are located where the loudspeaker diaphragm would 
be have been set to have a boundary condition of 
unity (1) surface-normal velocity.  With this 
boundary condition (assuming a rigid diaphragm), 
the acoustic radiation impedance can by BEM 
computation by taking the mean value of the acoustic 
pressure at the nodes of these diaphragm elements, 
scaled by the effective area of the diaphragm.  The 
transfer impedance, defined as the ratio of acoustic 
pressure at a field point of interest to the diaphragm 
velocity, is simply the acoustic pressure calculated by 
the BEM model at this field point. 
 
To further ensure correct calculation of the BEM 
results, a small modification was made to the BEM 
mesh.  A 120mm extension to the ‘tongue’ of the 
folded horn, as per Figure 6, was added in both the 

mesh used for BEM analysis and in the experimental 
unit under test. 
 

 
Figure 6: Extension of the ‘tongue’ of the folded horn.  This 
modification was made in a BEM mesh as well as in an 
experimental unit. 
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1.6. Verification of BEM results 
The radiation and transfer impedance were measured 
directly, in order to verify the results of the BEM 
model.  
 
A block diagram of the experimental set-up for 
measuring the radiation impedance and transfer 
impedance is shown in Figure 7. 
 
A comparison of the real and imaginary parts of the 
radiation impedance between that predicted by the 
BEM model and that measured is shown in Figure 8.  
The dB magnitude of the same is shown in Figure 9.  
As can be seen in these figures, the measured 
impedance closely matches the results from the BEM 
model.  
 

10 20 50 100 200 400
−5000

0

5000

10000
Specific Input Impedance: Real & Imaginary

Frequency  Hz

P
a/

 m
/s

BEM (real)     
BEM (imag)     
Measured (real)
Measured (imag)

 
Figure 8: Radiation impedance (real & imaginary), from BEM 
model and measurement.  

 

10 20 50 100 200 400
130

135

140

145

150

155

160

165

170

175

180
Specific Input Impedance: dB Magnitude

Frequency  Hz

dB
 r

e 
20

uP
a 

@
 1

m
/s

BEM     
Measured

 
Figure 9: Radiation impedance (dB magnitude), from BEM 
model and measurement. 
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Figure 7: Block diagram of experimental set-up for measurement of radiation impedance and transfer impedance.  The 
loudspeaker was placed in an anechoic room for the measurement. 
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A comparison of the transfer impedance between 
results from the BEM model and the direct 
measurement is shown in Figure 10.  The agreement 
between the two is generally good, except at 
frequencies below 50Hz and between 200 Hz – 
300 Hz.  It is expected that the discrepancy below 
50 Hz is due to the inability of the anechoic room in 
which the measurement was made to properly re-
create free-field conditions at these low frequencies.  
(The nominal cut-off frequency of the room 
concerned is 70Hz)  The discrepancy between 200 
Hz – 300 Hz is due to non-rigid behaviour of the 
diaphragm, causing a single-point vibration 
measurement to give a poor estimate of the volume 
velocity of the loudspeaker. 
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Figure 10: Transfer impedance (dB magnitude), from BEM 
model and measurement. 
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Figure 11: Pressure (on-axis, far-field), to voltage ratio 
(dB), using BEM results in (1), vs. direct measurement. 

 
Results for the modified horn (as per Figure 6), are 
shown in Figure 12 (dB magnitude of impedance) 

and Figure 13 (pressure to voltage ratio).  These 
figures show that the BEM calculation is able to 
correctly predict the change in the acoustic behaviour 
caused by the ‘tongue’ extension shown in Figure 6. 
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Figure 12: Radiation impedance: original vs. modified horn 
(as per Figure 6), measured & BEM results. 
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Figure 13: Pressure (on-axis, far-field) to voltage ratio (dB): 
original vs. modified horn (as per Figure 6).  

2. One-parameter behaviour of the folded 
horn 

The one-parameter behaviour of the folded-horn 
under study is analysed by plotting the contour lines 
of constant phase on a post-processing grid within 
the horn.   These are shown in Figure 14 – Figure 18.   
 
As can be seen in these figures, the one-parameter 
behaviour of the horn seems to be approximately 
hyperbolic, i.e. at first a constriction, followed by a 
length of roughly constant cross-section, and then the 
area of expansion.   
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50Hz

 
Figure 14: Isophase contours at 50Hz. 

75Hz

 
Figure 15: Isophase contours at 75Hz.  

 

100Hz

 
Figure 16: Isophase contours at 100Hz.  

 
150Hz

 
Figure 17: Isophase contours at 150Hz.  
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250Hz

 
Figure 18: Isophase contours at 250Hz.  

 

3. Synthesis 
As per Figure 8 through Figure 10, the dominant 
feature of the radiation and transfer impedance is the 
large resonance occurring at 78Hz.  It is thus 
considered that the basic properties of the horn could 
be specified for a given driver in much the same way 
as a bass-reflex cabinet can be done, after the method 
published by Thiele (1961) [16].  This specification 
process, taking terminology from active analogue 
filter design, is generally referred to as synthesis.   
 
The process of synthesis assumes lumped-parameter 
approximations to the radiation and transfer 
impedance.  It is assumed that the radiation 
impedance can be modelled by a single-degree-of-
freedom (SDOF) system as so: 

( )( )∗λ−λ−
=

rmrmrm
rm
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s
m

sZ 1)(ˆ  (3) 

The accuracy of this model by comparison to the BEM 
simulations results is shown in Figure 19.  As can be 
seen in this figure, the SDOF model captures the main 
resonance, but not the higher resonances occurring at 
210 Hz and 360 Hz.  
 

10 20 50 100 200 400

120

140

160

dB
 r

e 
20

µP
a/

m
/s

Radiation impedance

SDOF Model
BEM result

10 20 50 100 200 400

−2

0

2

ph
as

e 
(r

ad
s.

)

Frequency (Hz)  
Figure 19: SDOF model of the radiation impedance. 

 
The transfer impedance can be modelled by a similar, 
by first separating between the monopole radiation 
aspects and that contributed by the horn, as so: 

)(
4

)(ˆ
·0 sZ

r
esSsZ htf

ikr

dtf π
ρ=  (4) 

where the terms in (4) are as follows: 

Ztf·h(s) horn-induced non-monopole radiation 
characteristics 

ρ0 density of air 
Sd effective area of the loudspeaker 
s Laplace variable, = i2π f 
 
In (4), Ztf·h(s) describes the effects on the radiation 
caused by the horn, and all other terms on the RHS are 
associated with free-field acoustic radiation from a 
monopole source.  In this way, the effect of the horn 
on the transfer impedance can estimated by  

( )( )∗λ−λ−
+=

rmrmtf
htf

ss

s
m

sZ 11)(·  (5) 

where the terms in (4) are as follows: 

λrm eigenvalue of SDOF system modelling the 
radiation impedance 

mtf effective mass of the SDOF system modelling 
the transfer impedance 

 
The accuracy of this model by comparison to the BEM 
data is shown in Figure 20. 
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Figure 20: Effect of horn on the transfer impedance, 
normalised to free-field (4π) monopole radiation.  

 
Substituting the RHS of (4) for Zrm(s) and the RHS of 
(5) in (1) results in the following expression for the 
far-field-pressure to voltage ratio: 
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where new terms in (6) are as follows: 

)(1 sp m  acoustic pressure at one (1) meter from the 
loudspeaker 

mrm effective mass of the SDOF system modelling 
the radiation impedance 

Reb blocked electrical resistance (DC-resistance) 
of the loudspeaker’s voice coil 

mt total mass of the loudspeaker diaphragm 
ct total mechanical damping of the loudspeaker 

diaphragm 
kd total stiffness, including the rear-acoustic 

loading, of the loudspeaker diaphragm. 
 
Rearranging the terms in (6) into standard analogue 
filter form (i.e. in a ratio of polynomials in s) 
produces 
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where new  terms in (7) are as follows 

ct·e mechanical and electrical damping of the 
loudspeaker, i.e. ebdet Rcc 2

0· φ+=  
crm effective damping of the SDOF system 

modelling the radiation impedance 
krm effective stiffness of the SDOF system 

modelling the radiation impedance 
 
It can be shown that (7) is the product between a 2nd-
order high-pass filter and a second-order band-boost 
filter. This can be seen in a plot of (7) shown in 
Figure 21, using values of the SDOF model that most 
closely match the BEM results.  In Figure 21, the 
acoustic response of the loudspeaker mounted in its 
rear enclosure, as it would behave if the horn were 
absent, is plotted in green.  Plotted in blue is the 
response using the SDOF model of (7).   
 
It can be seen that –according to the model – the horn 
provides some 10dB of peak lift in the acoustic 
response, occurring at the resonance frequency of the 
SDOF system modelling the radiation impedance.  
This is roughly similar to the increase in output 
provided by a properly tuned bass reflex system.  As 
per Figure 21, the folded horn does not, however, 
change the order of low-frequency roll-off; the roll-
off rate remains 12dB per octave, i.e. that of a closed-
box enclosure.  This is in contrast to a bass reflex 
enclosure, which will change the roll-off rate to 24dB 
per octave. 
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Figure 21: Pressure/voltage FRF, measured data (red), sdof 
model with horn (blues), without horn (green), and using 
the raw BEM data (black).   

A disadvantage of using a folded horn is also evident 
in Figure 21.  Using the BEM results for Zrm(s) and Ztf 
(s), the acoustic pressure response has peaks at 210 
Hz and 360 Hz; these peaks are generally thought to 
result in a subjectively unfavourable sound to the 
loudspeaker.  These peaks are the inevitable result of 
the peak in the transfer impedance.  It should be 
noted that, in this study, one low-frequency horn was 
measured and analysed in isolation; in actual usage, 
this type of loudspeaker enclosure is intended to be 
used in stacks of four or more.  Using this enclosure 
in stacks of multiple units is likely to reduce these 
peaks in the response at higher frequencies, due to 
the less abrupt change in the cross-sectional area of 
the wavefront as it leaves the individual enclosure 
unit.  Furthermore, this type of loudspeaker is not 
intended to be used at frequency much higher than 
200Hz, and thus these peaks would not normally be 
problematic. 
 
Differences in the response between that predicted by 
the BEM data and the measured data (the latter of 
which is plotted in red in Figure 21) is assumed to be 
due to measurement error.  The dominant source of 
measurement error is assumed to be a failure of the 
anechoic room in which this measurement was made 
to accurately create free-field acoustic conditions.  

4. Conclusions 
It has been shown that the boundary element method  
(BEM) can be used effectively to study the behaviour 
of low-frequency folded horns.  
 
It should be noted that, even with the computational 
ability of computers at the turn of the millennium, 
solution of BEM models requires a great deal of effort 
from experienced engineers.  To obtain useful results 

from BEM models requires time and patience from 
engineers skilled not only in the computer simulation, 
but also in the field of its application.  Considerable 
time is needed to set up models and analyse their 
results, even if one no longer need wait days for 
computations to complete (as one may have some 10 
years ago).  Thus, for the foreseeable future, it is 
expected that high-order computer simulation tools 
such as BEM will see use mainly for ‘debugging’ and 
developing understanding of complex, unintuitive 
acoustical systems.  The idea promoted by some in 
the late 1980’s that BEM would become a magic wand 
that the engineer could wave at a complicated 
technical problem has, so far, proven untrue.   
 
A single-degree-of-freedom model has been shown 
to be effective at modelling the first resonance of the 
folded horn.  In the analysis of this model, it is 
shown that the horn provides an increase of some 
10dB in the acoustic response of a loudspeaker 
system around the primary resonance frequency of 
the horn.  This increase is due to the resonant nature 
of the horn’s radiation and transfer impedance.  This 
is in contrast to traditional horns, which provide an 
increase in radiation and transfer impedance over a 
broad range of frequencies.  It is thus found that this 
type of horn behaves more like a bass-reflex than a 
traditional horn-loaded loudspeaker system. 
 
The single-degree-of-freedom model shows that 
parametric study of this type of folded horn is 
generally possible.  Such a model could be used to 
further study how the horn’s effective flare rate could 
be changed to produce some other acoustic response. 
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