
Unsupervised Clustering of Symbol Strings

John A. Flanagan
Nokia Research Center, PO Box 407, FIN-00045 NOKIA GROUP, Finland

E-mail : Adrian.Flanagan@nokia.com

Abstract— The Symbol String Clustering Map (SCM) is in-
troduced as a very simple but effective algorithm for clustering
strings of symbols in an unsupervised manner. The clustering is
based on an iterative learning of the input data symbol strings.
The learning uses the principle of Winner Take All (WTA) and
hence requires a similarity measure between symbol strings. A
novel and efficient, average based, similarity measure is defined.
Unsupervised generation of the data cluster structure results from
the use of a lateral inhibition function applied to the update of
adjacent nodes on the SCM lattice. A simple coding method to
convert time sequences of symbols to simple symbol strings for
use in the SCM is described. The SCM is shown to generate
clusters for symbol string data sets

I. I NTRODUCTION

Unlike a real number or vector representation a symbol or
symbol string representation is an abstract means of repre-
senting information. Methods for processing real vector data
for feature extraction and pattern recognition are varied and
well known [1], however, classical feature extraction and
pattern recognition algorithms when applied to symbol string
representations of data are not always so straight forward. One
of the main hurdles is that for feature extraction, or clustering
algorithms a distance or similarity measure is required which
in the case of symbol string data is not so easy. As a prac-
tical example of the clustering problem consider a simplified
version of the shopping basket problem . If each item or item
category in the shop is represented by a symbolψi ∈ Ψ,
whereΨ = {ψ1, . . . , ψN} is the total collection of items or
categories of items in the shop, then the shopping basket of
each customeri can be represented by a symbol string,

Si =
(
s1, s2, . . . , sn(i)

)
sj ∈ Ψ, j = 1, . . . , n(i). (1)

Note the lengthn(i) of the symbol string can and does vary
from customer to customer. The problem addressed here, in
terms of the shopping basket problem is ; given a large
sample of customer baskets, to identify different subgroups
of customers, the customers in each subgroup have a higher
probability of having the same items in their basket. This
corresponds to a classic clustering problem applied to symbol
strings.

There are two distinct approaches to the clustering problem.
In the first approach it assumed that there is a set of data points
S1, . . . ,SM to be divided intoK clusters. A typical criterion
is that the data points belonging to the same cluster are more
similar to each other than they are to data points belonging
to other clusters. Typically algorithms to perform this type of
clustering include, nearest neighbor [2], normalized cuts [3].
The second approach can be formally defined by considering
the common probability space(Ω,F , π), with ω ∈ Ω a sample

of Ω and in this case the sample of data points on which the
clustering is to be based,ω = {S1,S2, . . . ,SM}. Associated
with the random variablesSi is the probability density function
pΩ with state spaceS. In this case the idea is to associate
clusters with local peaks inpΩ. This approach requires either a
parametric or non parametric estimation ofpΩ and then some
means of detecting the local maxima. One requirement for
both approaches is to define some form of metric onS.

In the case of the shopping basket example, one approach
to defining a metric is to represent each customer basket by an
N dimensional vector, with a1 in positionm if the customer
purchased itemψm and a0 otherwise. However the numberN
in any real situation is very large and hence the computation is
intensive, despite the use of projection methods as described
in [4]. A different approach is to define a distance measure
between symbol strings, for example the Levenshtein distance
measure [5] or Hamming distance measures [6]. Based on this
type of measure it is possible to define a similarity measure
between symbol strings and perform a batch clustering, as
Kohonen and Somervuo [7], [8] based on the Self-Organizing
Map (SOM) [9]. This corresponds to the first approach to
clustering described above. In their approach the cluster cen-
ters are represented by data symbol strings that best represent
the average of each cluster. Another approach taken by Kaski
et al [10] is to generate anM dimensional histogram of the
frequency of occurrence ofM words in a each document of
a large collection of documents and use the histogram as a
realM dimensional vector representation. Using the histogram
the Euclidean distance between documents can be defined.
In this case each word corresponds to a symbol. It is then
possible to cluster the collection of documents using a learning
algorithm based on the SOM. While this approach could be
used in batch or sequential mode, corresponding to the second
approach to clustering, a large value ofM corresponding to a
certain vocabulary is required and it remains computationally
intensive even when using dimension reducing methods.

The Symbol String Clustering Map (SCM) is introduced as a
novel, efficient algorithm for the non parametric, unsupervised
clustering of symbol strings. It falls within the second category
of clustering algorithms as it is based on learning the proba-
bility of symbols in strings. The SCM is based on a regular
lattice structure similar to the SOM lattice and associated with
each node of the lattice is a symbol string and a weight
vector. Each symbol of the node string is associated with
one coefficient of the weight vector. The Winner Take All
(WTA) principle is used during the learning and the winning
node is defined as the node showing a maximum activation
with respect to the current input. The node activation is a

simple weighted average of the node weights. A learning rule
is applied to each node and it is shown that the node weight
vector elements converges towards an approximation of the
probability of its corresponding symbol in the symbol string.
Lateral inhibition in the form of a Mexican hat is used to form,
in an unsupervised manner, the clusters.

In the next section some of the ideas behind learning symbol
strings are described and some of the easier convergence
properties are formally analyzed. It is shown that the learning
rule can be derived from a cost function. In section III based
on the learning rule and a related activation function the SCM
algorithm is described. A simple example of its operation
and expected result is described. Section IV describes how
the SCM algorithm can be used to cluster time sequences
of symbols, by simply using a hash coding of the time
sequence that gives an input suitable for use in the SCM.
It is suggested that this approach can be interpreted as a
more general, non parametric, approach to Markov Models
as applied to clustering time sequence symbol strings. An
example of clustering using the SCM with user sessions
collected from a WAP service is described. Finally section V
is the conclusion.

II. A L EARNING RULE AND COST FUNCTION FOR

SYMBOL STRINGS

The SCM algorithm is a symbol string learning algorithm
which means it does not store input symbol strings as rep-
resentative, typically average, symbol strings. To understand
what is meant by learning consider the alphabet of possible
symbols,Ψ = {ψ1, . . . , ψN} and the sequence of symbol
strings{Ŝ(0), Ŝ(1), . . . , }, where Ŝ(t) = (si1(t), . . . , sin̂

(t))
with sij

(t) ∈ Ψ and the constant probability vectorP =
(p1, . . . , pN) where pj ∈ [0, 1] is the probability thatψi ∈
Ŝ(t). Define a weight vectorX = (x1, . . . , xN) whereX(0)
can have any finite random value. At timet updateX as,

xi(t+ 1) =
{
xi(t) + α(t)(1.0− xi(t)) if ψi ∈ Ŝ(t)
xi(t) + α(t)(0.0− xi(t)) if ψi 6∈ Ŝ(t)

(2)
whereα(t) ∈ [0, 1.0] andα(t) → 0, t→∞ is a gain function.
This means that ifψi ∈ Ŝ(t) the value ofxi(t) is increased
towards1 and if ψi 6∈ Ŝ(t) the value ofxi(t) is decreased
towards0. The following theorem can be stated and proved.

Theorem 1:Given α(t) such that
∑∞

t=0 α(t) = ∞ and∑∞
t=0 α(t)2 <∞, if xi(t) is updated according to Eq. 2 then

∀ − ∞ < xi(0) < ∞, xi(t) → pi, ∀ i as t → ∞ with
probability 1.

Proof : The proof comes from stochastic approximation
theory [11] in which an ordinary differential equation can be
associated with Eq. 2 as,

dxi

dτ
= pi(1− xi) + (1− pi)(0− xi) (3)

and at the stationary point,dwi/dτ = 0, thenxi = pi. It
is straightforward to show that the conditions required by the
Kushner-Clark theorem (pg 39, [11]) are satisfied in Eq. 2 and

as a result of the Kushner-Clark theoremxi(t) → pi ast→∞
with probability 1 ∀ xi(0). 2

This theorem implies that the learning rule presented in
Eq. 2 meansxi almost surely converges topi, the probability
that symbolψi is in Ŝ, independent of the initial value ofxi.
Based on the same argument it is straightforward to show that
the learning rule of Eq. (2) leads to a stochastic approximation
minimization of the following cost functionC,

C =
N∑

i=1

< (δs
i − xi)2 > (4)

where ′ <>′ is an ensemble average andδs
i = 1 if ψi ∈ Ŝ

andδs
i = 0 otherwise.

If the SCM algorithm is to have an advantage over some
of the symbol string clustering algorithms described in the
introduction then it is assumed thatn̂(t) � N where n̂(t)
is the length of a sample input strinĝS(t) at time t. This of
course implies thatpj ≈ 0 for a large number ofψj ∈ Ψ. If
this is true then based on the arguments abovexj ≈ 0 for a
large number of the weights inX. In this case theX is reduced
so thatxij ∈ X if and only if xij > xt wherext is some
threshold. This change requires a change of notation, where
now, associated withX is a symbol stringS = (sj1 , . . . , sjn̂

)
andX = (xj1 , xj2 , . . . , xjn̂

) with coefficientxij
> wt ∀xij

∈
X corresponding to symbolsij

∈ S. The cost function of
Eq. (4) then becomes,

C =
N∑

i=1

< (δs
i − xiδ

x
i)2 > (5)

where now,δx
i = 1 if ψi ∈ S and 0 otherwise. Note that

the update Eq. (2) still leads to a stochastic approximation
minimization ofC in Eq. (5).

The learning algorithm and the cost functionC just de-
scribed apply to a one node SCM algorithm but can be
generalized to aM ×M lattice node in the same manner. It
has been found that in order to find the winner node for each
input S(t), instead of defining an activation function directly
in terms of the cost in Eq. (5), better results are achieved by
defining the activation functionAk(t) for each nodek as,

Ak(t) =

(∑N
j=1 δ

s
j δ

x
j xj(t)

)
∗

(∑N
j=1 δ

s
j δ

x
j

)∑N
j=1 δ

s
j

∑N
j=1 δ

x
j

, (6)

It is seen in the next section that this activation function is
maximized by the learning rule used in the SCM algorithm.

III. T HE SCM ALGORITHM

The basic structure of the SCM algorithm consists of an
M × M lattice of nodes. Associated with each nodek of
the lattice are two entities, a symbol stringSk, from now on
referred to as the ”node string” and an associated weight vector
Xk where,

Sk(t) = (si1(t), . . . , sin(k,t)(t)), sij (t) ∈ Ψ, ∀ j, t
(7)

Xk(t) = (xi1(t), . . . , xin(k,t)(t)), xij (t) ∈ [0, 1], ∀ j, t

with n(k, t) the number of symbols in the node stringSk(t)
which is the same as the number of weights in the weight
vectorXk(t). Note thatxij (t) of Xk(t) is directly associated
with the symbolsij (t) of Sk(t). Initially the weight vectors
Xk and node stringsSk are set to random values withxj(0) ∈
[0, 1],∀ k, j. At time stept there is an input symbol string

Ŝ(t) =
(
ŝ1(t), ŝ1(t), . . . , ŝn̂(t)(t)

)
, (8)

The similarity betweenŜ(t) and each of the nodesk, is
calculated and given by an activation functionAk(t) ∈ [0, 1]
defined in Eq. (6). Based on Eq. (6) the activation function
for each nodek is a weighted average of the weights ofXk,
where the weighting for weightj of Xk is 1 if symbol j is
in the node string and the input symbol string. The weighting
is 0 otherwise. This weighted average is then multiplied by
a second term, given by the ratio of the number of matched
symbols between the node string and the input string and the
product of the total number of symbols in the input string and
the total number of symbols in the weight vector. It is clear
that this second term increases as the number of symbols in
common between the input symbol string and the node symbol
string increases relative to the total number of symbols in both
strings. The winner nodev(t) at time t is chosen as the one
with maximum activation, hence

v(t) = arg max
1≤k≤M×M

Ak(t). (9)

This represents the first step or WTA of the clustering algo-
rithm, deciding on the winner node that best represents the
input. The second stage is the updating of the nodes. For each
nodek = 1, 2, . . . ,M ×M the following is the update rules
for the node stringSk(t) and the node weight vectorXk(t),

1) if ψi ∈ Ŝ(t), ψi ∈ Sk(t) andhm(v(t), k) > 0 then

xi(t+ 1) = xi(t) + α(t) hm(v(t), k)
(
1.0− xi(t)

)
.

2) if ψi ∈ Ŝ(t), ψi ∈ Sk(t) andhm(v(t), k) < 0 then

xi(t) = xi(t) + α(t) |hm(v(t), k)|
(
0.0− xi(t)

)
.

3) if ψi 6∈ Ŝ(t) andψi ∈ Sk(t) then

xi(t) = xi(t) + α(t) |hm(v(t), k)|
(
0.0− xi(t)

)
.

4) if ψi ∈ Ŝ(t), ψi 6∈ Sk(t) and hm(v(t), k) > 0 then,
Sk = {Sk, ψi}, Xi = {X, xi(t)} with

xi(t) = α(t) hm(v(t), k).

5) if xi(t) < xt then removeψi from Sk(t) andxi(t) from
Xk(t).

In these rules,α(t) ∈ [0, 1] is a gain that decreases towards0
ast increases,hm(v(t), k) is the Mexican hat as a function of
the lattice distancedL between the winnerv(t) and the node
k being updated. The variation ofhm over time is indicated
in figure 1. In rule 1 ifψi is in both the input and the node
k symbol string withhm(v(t), k) > 0 then weight coefficient
xi(t) is increased towards1. hm(v(t), k)is positive for nodes

Fig. 1. Time varying Mexican hat function.

close to v(t) on the lattice. For the same case, in rule2,
with hm(v(t), k) < 0, then xj(t) is decreased significantly
towards0. hm(v(t), k) < 0 if v(t) and k are separated by
a greater lattice distancedl. This corresponds to a form of
lateral inhibition. In rule 2 if sj(t) 6∈ Ŝ(t) then xj(t) is
decreased towards0 irrespective of the sign ofhm(v(t), k).
In rule 3, if ψi ∈ Sk(t) but is not inŜ(t) then independent of
the polarity ofhm the coefficientxi(t) is decreased towards
0.0. Rule 4 adds symbolψi to the nodek symbol string
and a corresponding weight coefficientxi(t), if the symbol
does not already appear inSk(t). Finally rule 5 removes any
symbols from the node symbol string if the coefficientxi(t)
is below the thresholdxt. Overall the idea is to increase the
weights of symbols that are frequently matched between the
node string and the input symbol string while eliminating
less commonly occurring symbols in the node strings. At the
same time the length of the node symbol strings is made
to converge to the length of the input symbol strings. The
effect of the lateral inhibition is to drive to0 the weights of
symbols in node strings, close to but not immediate neighbors
of winning nodes. If the weights of a node are decreased
then from Eq. (6) it is less likely to be a winning node
later on during training. This enhanced negative effect drives
the node strings of nodes that are not often winner to null
symbol strings. On the other hand the nodes that are quite
often winner and their neighbor’s tend to have their weights
increased towards1 and from Eq. (6) are more likely to be
winners later in training. The null nodes then serve the purpose
of separating the clusters which are represented by sets of
neighboring non-null nodes with weight vector coefficients
close to1. Hence the unsupervised formation of clusters can
be understood in terms of the probability distribution of the
input symbol strings. Frequently occurring symbol strings that
represent clusters then appear in the lattice separated from
other frequently occurring but quite different symbol strings
by null nodes. For the moment the only proof of this behavior
is given from simulation. The result of the learning algorithm
is best understood from example.

A randomly initialized, SCM of lattice size15× 15 nodes,
was trained using the following10 basic symbol strings made
up from an alphabet of50 symbols,Ψ = {1, 2, . . . , 50}.

(15, 21, 23, 32) (17, 28, 29, 32, 34, 35)
(7, 9, 13, 29, 32) (10, 19, 33, 35)
(11, 23, 31) (9, 21, 22, 28, 29, 31)
(7, 9, 13, 22, 26, 28) (28, 34, 35)
(14, 17, 32) (7, 8, 10, 13, 16, 26)

At each iteration anoisy input symbol string was generated
by randomly choosing one of the10 basic symbol strings
and making random variations to it. In this case at each time
c the number of variations made, is the total length of the
basic symbol string multiplied by a random number uniformly
distributed in [0, 0.5]. Each of thec variations was chosen
randomly as either, 1) the insertion of a randomly chosen
ψi ∈ Ψ in Ŝ(t), 2) the deletion of a randomly chosen symbol
from Ŝ(t), 3) the replacement of a randomly chosen symbol
ψi in Ŝ(t) by another randomly chosen symbolψj ∈ Ψ. The
expected result is an input with10 distinctive clusters. The
gain functionα(t) was of the form

α(t) = 10000/(20000 + t) (10)

for t = 0, . . . , 40000 and satisfies the conditions onα in
Theorem 1. The value of the threshold in step 4 was a function
of time, xt(t) = 0.2 ∗ t/40000. The time variation ofhm is
the same as that in figure 1, given as follows.,

hm(i) = (1.0− a ? b ? i2)exp(−a ∗ i2) (11)

wherea = 0.35 is a constant determining, the width of the
Mexican hat andb varies with time as,

b = 2.0× t/40000 (12)

The value ofb determines the minimum negative value of
the Mexican hat function. Figure 2 (a) shows after training
the symbol strings of some of the nodes. Figure 2 (b) shows
the corresponding node weight vectors after training. For the
sake of illustration not all node strings and weight vectors are
shown, however, in 2 (b) the nodes with a null weight vector
and symbol string are marked by a ’.’ while those with a non
null weight vector and symbol string are marked by a′•′. It is
clear that there are10 distinct clusters each cluster separated
from other clusters by neighboring sets of null nodes. On
examination each cluster corresponds to one of the original
inputs. From the discussion earlier the coefficients of the
weight vectors should correspond to the probability of the
symbol appearing in the input symbol string associated with
that cluster. While the results presented here are based on one
simulation, repeating the simulation many times from random
initial conditions, in a very robust manner, the SCM algorithm
converges to a final state representing the10 clusters.

IV. CLUSTERING TIME SEQUENCESYMBOL STRINGS

WITH THE SCM

The discussion so far has concentrated on symbol strings
where the ordering of the symbols in the string is unimportant.

(a)

(b)

Fig. 2. (a) Symbol strings for nodes of the SCM. (b) The corresponding
weight vectors associated with the symbol strings of each node of the SCM.
The nodes ’.’ have null node string and the′•′ nodes have non-null node
strings.

There is however another form of symbol string where the
ordering of the symbols in the string is important. For example
a user who logs into a web site and visits different WEB
pages. If each page of the web site is denoted by a distinct
integer value then for each user session a symbol string of
integers describes the user session. Clustering data from many
different user sessions should result inK clusters with each
cluster corresponding to a different type of distinctive user
session. This type of problem can be analyzed using Hidden
Markov Models (HMMs) and a clustering algorithm based
on a mixture model as in Cadez et al [12]. However the
SCM algorithm provides a non parametric alternative and
more general approach than HMMs to clustering this type of
sequence.

The SCM algorithm as described in the previous section,
that is the update rule and the activation function are very
specific to symbol strings where the order of the symbols is
not important. However it is quite simple to convert a time
sequence symbol string to a symbol string where the order of
the symbols is not important allowing the SCM algorithm to
be used. The coding is a very simple hash coding [9] of the
time sequence symbol string.

Consider3 consecutive symbols̃s(t−2), s̃(t−1), s̃(t) from
a time sequence symbol string where the symbolss̃ ∈ Ψ
the finite alphabet andN = C(Ψ) the cardinality, or total
number of elements inΨ. If the alphabet is finite and countable
then there is always a one-one correspondence between each
element of the alphabet and the positive integers. The coding
method is easier explained if the symbols are considered to be
positive integers, and henceΨ = {1, 2, . . . , N}. Generate a
new symbols ∈ Ψ′ as,

s(t) = s̃(t− 2) ∗N2 + s̃(t− 1) ∗N + s̃(t). (13)

Using this type of encoding, for each triplet of symbols
(
s̃(t−

2), s̃(t− 1), s̃(t)
)
∈ Ψ×Ψ×Ψ there is a one to one mapping

with an elements ∈ Ψ′. It is also clear thatC(Ψ′) = N3.
sm(t) corresponds to the hash coding of an 3-gram used in
[9]. This coding can be extended in a general way and the
coding is defined to be of orderm which gives

sm(t) =
m−1∑
j=0

s̃(t− j) ∗N j . (14)

In more general terms such an approach can be used to code
not just adjacent symbols but also next to adjacent. For exam-
ple from the triplet̃s(t−2), s̃(t−1), s̃(t), the pairs̃(t−2), s̃(t)
could be coded to order2 as s(t) = s̃(t − 2) ∗N + s̃(t).
It is seen that the hash coding is effectively coding the
transitions between consecutive symbols in the time sequence
symbol string into a new set of symbols. This is essentially
the aim of HMMs, however in HMMs traditionally only
transitions between adjacent states are analyzed. In general
a time sequence symbol string can be coded as,

Sp,q,d =
(m∑

j=1

s̃(t− θk(j)) N j−1
)

(15)

for k = 1, . . . , (m − 1)d+1,m = p, . . . , q ,where p is
the minimum order of coding,q is the maximum order of
coding andd is the maximum displacement in the sequence
between the symbols that can be coded together andθk(j)
is the displacement in the string from the current symbol
s̃(t). θk(j) =

∑j
i=1 φk(i) whereφk is anm dimensional

integer vector withφk(i) ∈ [1, d + 1], i = 2, . . . ,m and
φk(1) = 0,∀ k. For example the time sequence symbol string,
(1, 2, 3, 4, 5) with N = 10, coded to ordersp = 2, q = 3 and
d = 1 results in the coded symbol string

(12, 123, 23, 13, 234, 134, 124, 34, 24,
345, 245, 235, 135, 45, 35)

In the coded symbol string it is assumed that the ordering of
the symbols is not important as the short range ordering of
the original time sequence symbol string has been encoded.
While the length of the coded symbol string is longer than the
original, the increase in complexity for the similarity measure
is proportional to the length of the symbol string for small
p, q, d as opposed to the complexity of the similarity measure
such a s the Levenshtein measure between two time sequence
strings strings that is proportional to the product of the lengths
of the two strings.

As an example of coding and clustering time sequence
symbol strings, user sessions from a real WAP server were
used. Each user session corresponds to a time sequence symbol
string where each page of the WAP service available was as-
signed a unique integer value, 1 = Business, 2 = Entertainment,
3 = Feedback, 4 = Front page, 5 = Fun, 6 = My mail, 7 = My
page, 8= News, 9 = News send, 10= Sports, 11 = Today, 12
= Weather. Figure 3(a) illustrates some of the sessions which
for a WAP service are typically quite short. Note that all the
sessions shown begin on the ’Front page’ which is typical of
the data. The data was coded usingp = 2, q = 3, d = 1 with
N = 15 and an SCM with the same parameters as the previous
example in section III fort = 0, . . . 40000. There are a total
of 25601 user sessions in the data base and at each timet
one of these was chosen at random as the input. Figure 3(b)
shows the resulting coded node symbol strings on the SCM
lattice and figure 3(c) shows the corresponding node weight
vectors. Once again for ease of illustration not all node symbol
strings and weight vectors are shown, but the nodes with a non
null weight vector and symbol string are indicated by a′•′.
There are11 distinct clusters on the lattice. Examples of the
decoded or time sequence symbol strings associated with each
cluster moving from left to right and top to bottom of the SCM
lattice are1030 = [4, 8, 4], 986 = [4, 5, 11], 1010 = [4, 7, 5],
1058 = [4, 10, 8], 72 = [4, 12], 66 = [4, 6], 1016 = [4, 7, 11],
68 = [4, 8], 1021 = [4, 8, 1], 61 = [4, 1] and1031 = [4, 8, 11].
The different categories of user associated with each cluster are
evident, for example cluster[4, 8, 11] users go from the front
page to the news to the today page whereas cluster[4, 10, 8]
go from the front page to the sports and then to the news, on
the other hand cluster[4, 8, 1] users go from the front page to
the news to the business page. Using more nodes in the SCM

(a)

(b)

(c)

Fig. 3. (a) Illustration of sample sequences from the WAP sessions. (b) The
SCM lattice with some of the node symbol strings. (c) The corresponding
SCM and the node weight vectors for nodes marked with ”•”. Nodes marked
by ”.” have a null weight vector.

lattice it is possible to distinguish more detailed clustering,
however the example used here is sufficient for illustration.

V. CONCLUSIONS

Symbol strings are a simple means of representing informa-
tion. The simplest symbol string is one for which the order of
the symbols is not important. This is also the easiest type to
process. The SCM algorithm is a simple and efficient method
for the unsupervised clustering of such strings. It is possible to
show in the simple case that the update rule used in the SCM
algorithm on the node weights converges to the probability
of a symbol being in a symbol string. Using a simple hash
coding, symbol strings for which the order of the symbols
contains information, can be converted to the simple symbol
string and clustered in the SCM. The coding method followed
by clustering in the SCM provides a simpler non parametric
description of the data than HMMs. The SCM is widely
applicable because it makes few if any assumptions about the
data and how it is generated except that it contains clusters.
This means the SCM does not try to estimate model parameters
for a model but rather through learning it gives a non-
parametric description of the data based on the most frequently
occurring patterns in the data. It provides an efficient, robust
and general method for processing very different types of
information based on a symbolic representation.

ACKNOWLEDGMENT

The author would like to thank Urpo Tuomela and Heikki
Anttila for their continued support of this work.

REFERENCES

[1] D. Hand, H. Mannila, and P. Smyth,Principles of Data Mining, ser.
Adaptive Computation and Machine Learning. The MIT Press, 2001.

[2] A. Jain and R. Dubes,Algorithms for Clustering Data. Englewood
Cliffs, NJ: Prentice Hall, 1988.

[3] J. Shi and J. Malik, “Normalized usts and image segmentation,”IEEE
Trans. on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp.
888–905, Aug. 2000.

[4] C. C. Aggarwal, J. L. Wolf, P. S. Yu, C. Procopiuc, and J. S. Park,
“Fast algorithms for projected clustering,” inProceedings of the 1999
ACM SIGMOD international conference on Management of data. ACM
Press, 1999, pp. 61–72.

[5] V. Levenshtein, “Binary codes capable of correcting deletions, insertions
and reversals,”Soviet Physics Doklady, vol. 10, no. 8, pp. 707–710, Feb.
1966.

[6] R. Hamming, “Error detecting and error correcting codes,”Bell Sytem
Techical Journal, vol. 9, pp. 147–160, April 1950.

[7] T. Kohonen and P. Somervuo, “Self-organizing maps of symbol strings,”
Neural Processing Letters, vol. 10, pp. 151–159, 1999.

[8] P. Somervuo, “Self-organizing maps for signal and symbol sequences,”
Ph.D. dissertation, Helsinki University of Technology, 2000, acta Poly-
technica Scandinavia, Mathematics and Computing Series No. 107.

[9] T. Kohonen,Self-Organizing Maps. Berlin, Heidelberg: Springer, 2001,
(Third Extended Edition).

[10] S. Kaski, T. H. K. Lagus, and T. Kohonen, “WEBSOM- self-organizing
maps of document collections,”Neurocomputing, vol. 21, pp. 101–117,
1998.

[11] H. Kushner and D. Clark,Stochastic approximation methods for con-
strained and unconstrained systems. Springer-Verlag, 1978.

[12] I. V. Cadez, S. Gaffney, and P. Smyth, “A general probabilistic frame-
work for clustering individuals and objects,” inProceedings of the sixth
ACM SIGKDD international conference on Knowledge discovery and
data mining. ACM Press, 2000, pp. 140–149.

