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Abstract—The Symbol String Clustering Map (SCM) is in- of © and in this case the sample of data points on which the
troduced as a very simple but effective algorithm for clustering clustering is to be based, = {S1,S2,...,S}. Associated
strings of symbols in an unsupervised manner. The clustering is \yith the random variableS; is the probability density function

based on an iterative learning of the input data symbol strings. . . . . .
The learning uses the principle of Winner Take All (WTA) and P with state spaces. In this case the idea is to associate

hence requires a similarity measure between symbol strings. A clusters with local peaks ip,. This approach requires either a
novel and efficient, average based, similarity measure is defined. parametric or non parametric estimationgef and then some

Unsupervised generation of the data cluster structure results from means of detecting the local maxima. One requirement for
the_ use of a lateral inhibition function applied to the update of both approaches is to define some form of metricSon
adjacent_nodes on the SCM lattice. A S|_mple coding meyhod to In the case of the shopping basket example, one approach
convert time sequences of symbols to simple symbol strings for o s '
use in the SCM is described. The SCM is shown to generate t0 defining a metric is to represent each customer basket by an
clusters for symbol string data sets N dimensional vector, with & in positionm if the customer
purchased iteny,,, and a0 otherwise. However the numbéf
in any real situation is very large and hence the computation is
Unlike a real number or vector representation a symbol pitensive, despite the use of projection methods as described
symbol string representation is an abstract means of repii¢{4]. A different approach is to define a distance measure
senting information. Methods for processing real vector dag@tween symbol strings, for example the Levenshtein distance
for feature extraction and pattern recognition are varied afgkasure [5] or Hamming distance measures [6]. Based on this
well known [1], however, classical feature extraction anfjpe of measure it is possible to define a similarity measure
pattern recognition algorithms when applied to symbol stringetween symbol strings and perform a batch clustering, as
representations of data are not always so straight forward. Qghonen and Somervuo [7], [8] based on the Self-Organizing
of the main hurdles is that for feature extraction, or clusteringap (SOM) [9]. This corresponds to the first approach to
algorithms a distance or similarity measure is required whigllustering described above. In their approach the cluster cen-
in the case of symbol string data is not so easy. As a praers are represented by data symbol strings that best represent
tical example of the clustering problem consider a simplifieghe average of each cluster. Another approach taken by Kaski
version of the shopping basket problem . If each item or itegt al [10] is to generate an/ dimensional histogram of the
category in the shop is represented by a symbple V¥, frequency of occurrence af/ words in a each document of
where ¥ = {¢,...,%n} is the total collection of items or a large collection of documents and use the histogram as a
categories of items in the shop, then the shopping basketrghl 1/ dimensional vector representation. Using the histogram
each customer can be represented by a symbol string,  the Euclidean distance between documents can be defined.
) In this case each word corresponds to a symbol. It is then
possible to cluster the collection of documents using a learning
Note the lengthn(i) of the symbol string can and does vanalgorithm based on the SOM. While this approach could be
from customer to customer. The problem addressed here,used in batch or sequential mode, corresponding to the second
terms of the shopping basket problem is ; given a larggproach to clustering, a large value/df corresponding to a
sample of customer baskets, to identify different subgroupsrtain vocabulary is required and it remains computationally
of customers, the customers in each subgroup have a higimensive even when using dimension reducing methods.
probability of having the same items in their basket. This The Symbol String Clustering Map (SCM) is introduced as a
corresponds to a classic clustering problem applied to symimalvel, efficient algorithm for the non parametric, unsupervised
strings. clustering of symbol strings. It falls within the second category
There are two distinct approaches to the clustering probleof. clustering algorithms as it is based on learning the proba-
In the first approach it assumed that there is a set of data poibilgty of symbols in strings. The SCM is based on a regular
S1,...,S) to be divided intoK clusters. A typical criterion lattice structure similar to the SOM lattice and associated with
is that the data points belonging to the same cluster are megeh node of the lattice is a symbol string and a weight
similar to each other than they are to data points belongimgctor. Each symbol of the node string is associated with
to other clusters. Typically algorithms to perform this type abne coefficient of the weight vector. The Winner Take All
clustering include, nearest neighbor [2], normalized cuts [WTA) principle is used during the learning and the winning
The second approach can be formally defined by consideringde is defined as the node showing a maximum activation
the common probability spad€), 7, 7), with w € Q a sample with respect to the current input. The node activation is a
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simple weighted average of the node weights. A learning rudes a result of the Kushner-Clark theorenit) — p; ast — oo

is applied to each node and it is shown that the node weighith probability 1 V z;(0). O

vector elements converges towards an approximation of theThis theorem implies that the learning rule presented in

probability of its corresponding symbol in the symbol stringeq. 2 means:; almost surely converges {9, the probability

Lateral inhibition in the form of a Mexican hat is used to formthat symboly; is in S, independent of the initial value of;.

in an unsupervised manner, the clusters. Based on the same argument it is straightforward to show that
In the next section some of the ideas behind learning symbtibé learning rule of Eq. (2) leads to a stochastic approximation

strings are described and some of the easier convergentgsimization of the following cost functioid,

properties are formally analyzed. It is shown that the learning N
rule can be derived from a cost function. In section Il based C = Z < (65 —x4)? > 4)
on the learning rule and a related activation function the SCM i—1

algorithm is described. A simple example of its operatio\?vhere, <> is an ensemble average affi— 1 if ¥ € §
and expected result is described. Section IV describes how ~ : g L ¢
ando; = 0 otherwise.

the SCM algorithm can be used to cluster time Sequences. . soM algorithm is to have an advantage over some
of symbols, by simply using a hash coding of the time

. . . ) the symbol string clustering algorithms described in the
sequence that gives an input suitable for use in the SCMtroduction then it is assumed tha(t) < N where f(¢)

It is suggested that this approach can be interpreted as he length of a sample input strirfgt) at time . This of

: |
more ggneral, non pgramgtrlc, approach to Markoy I\/l()de%urse implies thap; ~ 0 for a large number ofy; € U. If
as applied to clustering time sequence symbol strings. %1

example of clustering using the SCM with user sessiops> S rue then based on the arguments aboye- 0 for &

ns ) . )
collected from a WAP service is described. Finally section @rge number of t.he weights Di In this case th&X is .reduced
) . so thatz;. € X if and only if z;, > x, wherex; is some
is the conclusion. g g

threshold. This change requires a change of notation, where
Il. A L EARNING RULE AND COSTFUNCTION FOR now, associated witX is a symbol stringS = (sj,, .. ., s;,)
SYMBOL STRINGS andX = (z;,,zj,,...,;,) with coefficientz;, > w; Vx;, €
_ _ _ _ _ X corresponding to symbod;, € S. The cost function of
The SCM algorithm is a symbol string learning algorithniq. (4) then becomes,

which means it does not store input symbol strings as rep- N

resentative, typically average, symbol strings. To understand o = 55 — 2672 5
what is meant by learning consider the alphabet of possible ; < (07 —@df)” > ©)
symbols, ¥ = {¢y,...,7%n} and the sequence of symbol

. A el where now,é¥ = 1 if ¢; € S and 0 otherwise. Note that
Wi s,(0) © 0 and i consiant probabiy vecie - e Update =g (2) Sl leads 1 a stochastc approximator
(Sp(1t7) D;a;lf)ﬁr\g é \;Vr\];;?g%t 5e([:(t)(7);(] |:S (tgi '?tiiai);llxhgﬁzwi(oe) The learning algorithm and the cost fun_ctim‘l just de-
can have any finite random value. At timaipdateX as, scnbed.apply to a one n.ode SCM algorithm ‘but can be

generalized to @/ x M lattice node in the same manner. It
zi(t) + a(t)(1.0 —z:(t) if ¥ € S(t) has been found that in order to find the winner node for each
zi(t+1) = { zi(t) + a(t)(0.0 — z;(t)) if ¥ & S(t) input S(¢), instead of defining an activation function directly
in terms of the cost in Eq. (5), better results are achieved by
wherea(t) € [0,1.0] anda(t) — 0, — oo is a gain function. defining the activation functiopd,.(¢) for each nodek as,

This means that if); € S(t) the value ofz;(t) is increased N gssr N csca
towards1 and if 1; ¢ S(t) the value ofz;(t) is decreased Ap(t) = (Zi= 5]6Jij(t)) tv (Zi= 6J5]), (6)
towards0. The following theorem can be stated and proved. 21052252165

Theorem 1:Given o(t) such thaty =, a(t) = oo and |t is seen in the next section that this activation function is
g alt)® < oo, if x;(t) is updated according to Eq. 2 thenmaximized by the learning rule used in the SCM algorithm.
V —oo < z;(0) < oo, x;i(t) — piy, Vi ast — oo with
probability 1. [1l. THE SCM ALGORITHM

Proof : The proof comes from stochastic approximation The basic structure of the SCM algorithm consists of an
theory [11] in which an ordinary differential equation can bé/ x M lattice of nodes. Associated with each nokeof

associated with Eq. 2 as, the lattice are two entities, a symbol striSg, from now on
d. referred to as the "node string” and an associated weight vector
y t o= pi(l—w) + (1—p)(0— ;) (3) Xy Where,
-
and at the stationary pointlw;/dr = 0, thenz; = p;. It Sk(t) = (s (t),orsi,0 (1), 53, (1) €T, ¥ 5ot
is straightforward to show that the conditions required by the (7

Kushner-Clark theorem (pg 39, [11]) are satisfied in Eq. 2 anXy. (1) = (24, (t),- .-, Ti (1), @i;(t) € [0,1], ¥V j,t



with n(k,t) the number of symbols in the node strifg(¢) & v
which is the same as the number of weights in the weight <
vector X(t). Note thatz;, (t) of X, (t) is directly associated

with the symbols;, (t) of S, (t). Initially the weight vectors

X}, and node stringS;, are set to random values witt) (0) € 05t Increasing time
[0,1],V k,j. At time stept there is an input symbol string

S(t) = (51(),51(1)s- - Bagn (1), 8)
The similarity betweenS(¢) and each of the nodes, is 0

calculated and given by an activation functigh(t) € [0, 1]
defined in Eqg. (6). Based on Eq. (6) the activation function
for each node: is a weighted average of the weights %f,,
where the weighting for weight of X, is 1 if symbol j is 055 0 5
in the node string and the input symbol string. The weighting i

is 0 otherwise. This weighted average is then multiplied by
a second term, given by the ratio of the number of matched
symbols between the node string and the input string and the
product of the total number of symbols in the input string and
the total number of symbols in the weight vector. It is cles#0se touv(t) on the lattice. For the same case, in rale
that this second term increases as the number of symboldMith % (v(t),k) < 0, thenz;(t) is decreased significantly
common between the input symbol string and the node symt@wards0. hy,(v(t),k) < 0 if v(t) and & are separated by
string increases relative to the total number of symbols in bothgreater lattice distancé;. This corresponds to a form of
strings. The winner node(t) at time ¢ is chosen as the onelateral inhibition. In rule 2 ifs;(t) ¢ S(t) then x;(t) is

Fig. 1. Time varying Mexican hat function.

with maximum activation, hence

v(t) = arg max Ag(t).
1<k<MxM

decreased towards irrespective of the sign ok, (v(t), k).
In rule 3, if ¢; € Sy (¢) but is not inS(t) then independent of
the polarity ofh,, the coefficientz,(t) is decreased towards
0.0. Rule 4 adds symbol); to the nodek symbol string

This represents the first step or WTA of the clustering alggnd a corresponding weight coefficient(t), if the symbol
rithm, deciding on the winner node that best represents t§ges not already appear 8),(¢). Finally rule 5 removes any
input. The second stage is the updating of the nodes. For e%?Pnbols from the node symbol string if the coefficientt)
nodek = 1,2,...,M x M the following is the update rules s pelow the threshold:;. Overall the idea is to increase the

for the node strindS,(¢) and the node weight vectdf(¢),
1) if o; € S(t), 1; € Si(t) and hy, (v(t), k) > 0 then

2t +1) = 2;(t) + a(t) h(v(t), k) (1.0 - xi(t)).
2) if 4; € S(t), ; € Si(t) andhy, (v(t), k) < 0 then

zilt) = wilt) + alt) [ (0(), 1) (0.0 = z:(1)).
3) if ¢; & S(t) andv; € Si(t) then

zi(t) = zi(t) + alt) |hm(v(), k)|(0.0 - m,;(t)).

4) if ¢; € S(t), ¢; & Sik(t) and hy,(v(t),k) > 0 then,

zi(t) = a(t) hp(v(t), k).

5) if z;(t) < z, then remova); from Sy (¢) andx;(t) from
X (t).

weights of symbols that are frequently matched between the
node string and the input symbol string while eliminating
less commonly occurring symbols in the node strings. At the
same time the length of the node symbol strings is made
to converge to the length of the input symbol strings. The
effect of the lateral inhibition is to drive t6 the weights of
symbols in node strings, close to but not immediate neighbors
of winning nodes. If the weights of a node are decreased
then from Eg. (6) it is less likely to be a winning node
later on during training. This enhanced negative effect drives
the node strings of nodes that are not often winner to null
symbol strings. On the other hand the nodes that are quite
often winner and their neighbor’'s tend to have their weights
increased toward$ and from Eq. (6) are more likely to be
winners later in training. The null nodes then serve the purpose
of separating the clusters which are represented by sets of
neighboring non-null nodes with weight vector coefficients
close tol. Hence the unsupervised formation of clusters can

In these rulesq(t) € [0,1] is a gain that decreases towaftls be understood in terms of the probability distribution of the
ast increasesh,,, (v(t), k) is the Mexican hat as a function ofinput symbol strings. Frequently occurring symbol strings that
the lattice distance;, between the winneo(t) and the node represent clusters then appear in the lattice separated from

k being updated. The variation @&f,, over time is indicated other frequently occurring but quite different symbol strings
in figure 1. In rule 1 ify; is in both the input and the nodeby null nodes. For the moment the only proof of this behavior
k symbol string withh,, (v(t), k) > 0 then weight coefficient is given from simulation. The result of the learning algorithm
x;(t) is increased towards. h,,,(v(t), k)is positive for nodes is best understood from example.



A randomly initialized, SCM of lattice sizé5 x 15 nodes,
was trained using the following0 basic symbol strings made
up from an alphabet 050 symbols,¥ = {1,2,...,50}.

(15,21,23,32) (17,28,29,32, 34, 35)
(7,9,13,29,32) (10,19, 33, 35)
(11,23,31) (9,21,22, 28,29, 31)
(7,9,13,22,26,28) (28,34, 35)
(14,17,32) (7,8,10,13, 16, 26)

At each iteration anoisy input symbol string was generated
by randomly choosing one of th&) basic symbol strings
and making random variations to it. In this case at each time
¢ the number of variations made, is the total length of the
basic symbol string multiplied by a random number uniformly
distributed in[0,0.5]. Each of thec variations was chosen
randomly as either, 1) the insertion of a randomly chosen
Y, € Win S(t), 2) the deletion of a randomly chosen symbol
from S(t), 3) the replacement of a randomly chosen symbol
¥; in S(t) by another randomly chosen symhp) € ¥. The
expected result is an input with0 distinctive clusters. The
gain functiona(t) was of the form

a(t) = 10000/(20000 + t) (10)

for ¢t = 0,...,40000 and satisfies the conditions am in
Theorem 1. The value of the threshold in step 4 was a functior
of time, z;(t) = 0.2 % ¢t/40000. The time variation ofh,, is

the same as that in figure 1, given as follows.,

hm(i) =

wherea = 0.35 is a constant determining, the width of the
Mexican hat and varies with time as,

(1.0 — a x bx i%)exp(—a * i?) (112)

b = 2.0 x £/40000 (12)

The value ofb determines the minimum negative value of
the Mexican hat function. Figure 2 (a) shows after training
the symbol strings of some of the nodes. Figure 2 (b) shows
the corresponding node weight vectors after training. For the
sake of illustration not all node strings and weight vectors are
shown, however, in 2 (b) the nodes with a null weight vector
and symbol string are marked by a ’." while those with a non
null weight vector and symbol string are marked bypa lt is
clear that there aré0 distinct clusters each cluster separated
from other clusters by neighboring sets of null nodes. On
examination each cluster corresponds to one of the origina
inputs. From the discussion earlier the coefficients of the
weight vectors should correspond to the probability of the
symbol appearing in the input symbol string associated with

that cluster. While the results presented here are based on one
simulation, repeating the simulation many times from randoﬁ‘ig

initial conditions, in a very robust manner, the SCM algorlthniah
converges to a final state representing theclusters.

IV. CLUSTERING TIME SEQUENCESYMBOL STRINGS
WITH THE SCM

The discussion so far has concentrated on symbol strings

where the ordering of the symbols in the string is unimportant.
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(a) Symbol strings for nodes of the SCM. (b) The corresponding

|ght vectors associated with the symbol strings of each node of the SCM.
e nodes ’
strings.

' have null node string and th€ nodes have non-null node



There is however another form of symbol string where tfer ¥ = 1,....(m — 1) 'm = p,...,q ,where p is
ordering of the symbols in the string is important. For exampthe minimum order of codingg is the maximum order of

a user who logs into a web site and visits different WEBoding andd is the maximum displacement in the sequence
pages. If each page of the web site is denoted by a distibettween the symbols that can be coded together Gafg)
integer value then for each user session a symbol stringisfthe displacement in the string from the current symbol
integers describes the user session. Clustering data from magty. 0,(j) = > ;_, ¢x(i) where¢; is anm dimensional
different user sessions should resultfin clusters with each integer vector with¢y(i) € [1,d + 1],4 = 2,...,m and
cluster corresponding to a different type of distinctive usef,(1) = 0,V k. For example the time sequence symbol string,
session. This type of problem can be analyzed using Hiddén 2, 3,4, 5) with N = 10, coded to orderp = 2,q = 3 and
Markov Models (HMMs) and a clustering algorithm based = 1 results in the coded symbol string

on a mixture model as in Cadez et al [12]. However the

SCM algorithm provides a non parametric alternative and (12,123,23,13,234,134,124, 34, 24,
more general approach than HMMs to clustering this type of 345,245,235, 135,45, 35)
sequence.

The SCM algorithm as described in the previous sectioln the coded symbol string it is assumed that the ordering of
that is the update rule and the activation function are veifye symbols is not important as the short range ordering of
specific to symbol strings where the order of the symbols tlse original time sequence symbol string has been encoded.
not important. However it is quite simple to convert a tim&Vhile the length of the coded symbol string is longer than the
sequence symbol string to a symbol string where the order@iginal, the increase in complexity for the similarity measure
the symbols is not important allowing the SCM algorithm tés proportional to the length of the symbol string for small
be used. The coding is a very simple hash coding [9] of tiweq, d as opposed to the complexity of the similarity measure
time sequence symbol string. such a s the Levenshtein measure between two time sequence

Consider3 consecutive symbol&(t —2), 5(t—1), 5(t) from  strings strings that is proportional to the product of the lengths
a time sequence symbol string where the symbols ¥ of the two strings.
the finite alphabet andv = C(¥) the cardinality, or total As an example of coding and clustering time sequence
number of elements ii. If the alphabet is finite and countablesymbol strings, user sessions from a real WAP server were
then there is always a one-one correspondence between aged. Each user session corresponds to a time sequence symbol
element of the alphabet and the positive integers. The codsiging where each page of the WAP service available was as-
method is easier explained if the symbols are considered todigned a unique integer value, 1 = Business, 2 = Entertainment,
positive integers, and hence = {1,2,..., N}. Generate a 3 = Feedback, 4 = Front page, 5 = Fun, 6 = My mail, 7 = My
new symbols € ¥’ as, page, 8= News, 9 = News send, 10= Sports, 11 = Today, 12
. 9 . . = Weather. Figure 3(a) illustrates some of the sessions which

s(t) = 8(t=2)xN" + 5(t =1« N + 3(t).  (13) for 2 WAP service are typically quite short. Note that all the
Using this type of encoding, for each triplet of symbgig — sessions shown begin on the 'Front page’ which is typical of
2),5(t—1),5()) € ¥ x ¥ x U there is a one to one mappingth€ data. The data was coded uspg: 2,¢ = 3,d = 1 with
with an elements € . It is also clear thaC(¥’) = N*. N=15 and an SCM with the same parameters as the previous
sm(t) corresponds to the hash coding of an 3-gram used gxample in section Ill for = 0,...40000. There are a total

[9]. This coding can be extended in a general way and tRé 25601 user sessions in the data base an.d at ea'ch time
coding is defined to be of orden which gives one of these was chosen at random as the input. Figure 3(b)

shows the resulting coded node symbol strings on the SCM

. . , lattice and figure 3(c) shows the corresponding node weight
sm(t) = Z 8(t =) = N7 (14)  Vectors. Once again for ease of illustration not all node symbol

=0 strings and weight vectors are shown, but the nodes with a non

In more general terms such an approach can be used to cndk weight vector and symbol string are indicated byea

not just adjacent symbols but also next to adjacent. For exalthere arell distinct clusters on the lattice. Examples of the

ple from the triplets(¢t—2), 5(t—1), 5(¢), the pairs(t—2),5(t) decoded or time sequence symbol strings associated with each

could be coded to order ass(t) = $(t—2)« N + §(t). cluster moving from left to right and top to bottom of the SCM

It is seen that the hash coding is effectively coding thattice are1030 = [4,8,4], 986 = [4,5,11], 1010 = [4, 7, 5],

transitions between consecutive symbols in the time sequenoss = [4, 10, 8], 72 = [4,12], 66 = [4,6], 1016 = [4,7,11],

symbol string into a new set of symbols. This is essential§8 = [4, 8], 1021 = [4,8, 1], 61 = [4,1] and 1031 = [4,8,11].

the aim of HMMs, however in HMMs traditionally only The different categories of user associated with each cluster are

transitions between adjacent states are analyzed. In genexédient, for example clusté#, 8, 11] users go from the front

m—1

a time sequence symbol string can be coded as, page to the news to the today page whereas clystéo, 8]
m go from the front page to the sports and then to the news, on
Sp.d = (Z 5(t — 0k(4)) NJ‘71> (15) the other hand clusted, 8, 1] users go from the front page to

J=1 the news to the business page. Using more nodes in the SCM
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lattice it is possible to distinguish more detailed clustering,
however the example used here is sufficient for illustration.

V. CONCLUSIONS

Symbol strings are a simple means of representing informa-
tion. The simplest symbol string is one for which the order of
the symbols is not important. This is also the easiest type to
process. The SCM algorithm is a simple and efficient method
for the unsupervised clustering of such strings. It is possible to
show in the simple case that the update rule used in the SCM
algorithm on the node weights converges to the probability
of a symbol being in a symbol string. Using a simple hash
coding, symbol strings for which the order of the symbols
contains information, can be converted to the simple symbol
string and clustered in the SCM. The coding method followed
by clustering in the SCM provides a simpler non parametric
description of the data than HMMs. The SCM is widely
applicable because it makes few if any assumptions about the
data and how it is generated except that it contains clusters.
This means the SCM does not try to estimate model parameters
for a model but rather through learning it gives a non-
parametric description of the data based on the most frequently
occurring patterns in the data. It provides an efficient, robust
and general method for processing very different types of
information based on a symbolic representation.
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Fig. 3. (a) lllustration of sample sequences from the WAP sessions. (b) The

SCM lattice with some of the node symbol strings. (c) The corresponding
SCM and the node weight vectors for nodes marked wath Rodes marked
by " have a null weight vector.



